欢迎访问范文百科-您身边的写作助手!

高三数学复习教案

安卓范文 分享 时间: 加入收藏 我要投稿 点赞

你正以凌厉的步伐迈进这段特别的岁月中。这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。一起看看高三数学复习教案!欢迎查阅!

高三数学复习教案1

教学准备

教学目标

解三角形及应用举例

教学重难点

解三角形及应用举例

教学过程

一.基础知识精讲

掌握三角形有关的定理

利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

二.问题讨论

思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.

思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

例6:在某海滨城市附近海面有一台风,据检测,当前台

风中心位于城市O(如图)的东偏南方向

300km的海面P处,并以20km/h的速度向西偏北的

方向移动,台风侵袭的范围为圆形区域,当前半径为60km,

并以10km/h的速度不断增加,问几小时后该城市开始受到

台风的侵袭。

一.小结:

1.利用正弦定理,可以解决以下两类问题:

(1)已知两角和任一边,求其他两边和一角;

(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。利用余弦定理,可以解决以下两类问题:

(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

3.边角互化是解三角形问题常用的手段.

三.作业:P80闯关训练

高三数学复习教案2

教学准备

教学目标

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.

教学重难点

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.__

教学过程

等比数列性质请同学们类比得出.

【方法规律】

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.

2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数

a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决.

【示范举例】

例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.

例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.

例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.

高三数学复习教案3

教学准备

教学目标

知识目标等差数列定义等差数列通项公式

能力目标掌握等差数列定义等差数列通项公式

情感目标培养学生的观察、推理、归纳能力

教学重难点

教学重点等差数列的概念的理解与掌握

等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用

教学过程

由__《红高粱》主题曲“酒神曲”引入等差数列定义

问题:多媒体演示,观察----发现?

一、等差数列定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。

例1:观察下面数列是否是等差数列:….

二、等差数列通项公式:

已知等差数列{an}的首项是a1,公差是d。

则由定义可得:

a2-a1=d

a3-a2=d

a4-a3=d

……

an-an-1=d

即可得:

an=a1+(n-1)d

例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。

分析:知道a1,d,求an。代入通项公式

解:∵a1=3,d=2

∴an=a1+(n-1)d

=3+(n-1)×2

=2n+1

例3求等差数列10,8,6,4…的第20项。

分析:根据a1=10,d=-2,先求出通项公式an,再求出a20

解:∵a1=10,d=8-10=-2,n=20

由an=a1+(n-1)d得

∴a20=a1+(n-1)d

=10+(20-1)×(-2)

=-28

例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。

分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n-1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。

解:由题意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n-1)×2=2n

练习

1.判断下列数列是否为等差数列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④-1,-8,-15,-22,-29;

答案:①不是②是①不是②是

等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a等于()

A.1B.-1C.-1/3D.5/11

提示:(-3a-5)-(a-6)=(-10a-1)-(-3a-5)

3.在数列{an}中a1=1,an=an+1+4,则a10=.

提示:d=an+1-an=-4

教师继续提出问题

已知数列{an}前n项和为……

作业

P116习题3.21,2


高三数学复习教案相关文章:

★ 高三数学复习方法整理教案总汇

★ 高三数学复习知识点归纳总结三篇

★ 最新高三数学复习知识点整理分享5篇

★ 高三数学复习知识点归纳精选5篇

★ 最新高三数学复习知识点整理精选5篇

★ 高三数学重点复习必考知识点整理精选5篇

★ 高三数学复习知识点总结三篇

★ 2020高三数学复习知识点精选5篇

★ 2020高三数学复习方法总结归纳分享五篇

★ 最新高三数学复习知识点总结三篇

221381
领取福利

微信扫码领取福利

微信扫码分享