数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思。下面是小编给大家整理的五年级数学教案设计,仅供参考希望能够帮助到大家。
五年级数学教案设计篇1
教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力.
教学重点:分数的数感培养,以及与除法的联系.
教学难点:抽象思维的培养.
教学过程:
一,铺垫复习,导入新知 [课件1]
1,提问:A,7/8是什么数 它表示什么
B,7÷8是什么运算 它又表示什么
C,你发现7/8和7÷8之间有联系吗
2,揭示课题.
述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少
提问:A,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米.
B,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)
板书: 1÷3= 1/3
C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法.
提问:A,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)
B,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.
3,小结提问:A,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
B,你能举几个用分数表示整数除法的商的例子吗
C,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
D,b为什么不能等于0
4, 看书P91 深化.
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算.
三,巩固练习 [课件5]
1,用分数表示下面各式的商.
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算.
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五,家作
P93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
五年级数学教案设计篇2
教学目标
1.理解和掌握循环小数的概念.
2.掌握循环小数的计算方法.
教学重点
理解和掌握循环小数等概念.
教学难点
理解和掌握循环小数等概念.
教学过程
一、铺垫孕伏
(一)口算
0.8times;0.5= 4times;0.25= 1.6+0.38=
0.15divide;0.5= 1-0.75= 0.48+0.03=
(二)计算
21divide;3= 15divide;3= 12divide;3= 10divide;3=
教师提问:通过计算,你发现了什么?
二、探究新知
(一)教学例7
例7 10divide;3
1.列竖式计算
教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)
使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.
所以10divide;3=3.33……
(二)教学例 8
例8 计算58.6divide;11
1.学生独立计算
2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,
所以58.6divide;11=5.32727……
3.观察比较 10divide;3=3.33…… 58.6divide;11=5.32727……
教师提问:你有什么发现?
(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)
4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.
教师板书:循环小数.像3.33……和5.32727……是循环小数.
5.简便写法
3.33……可以写作 ;
5.32727……可以写作
6.练习
把下面各数中的循环小数用括起来
1.5353…… 0.19292…… 8.4666……
(三)教学例9
例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)
1.学生独立列式计算
130divide;6=21.666……
asymp;21.67(十克)
答:小汽车大约装21.67千克汽油.
2.集体订正
重点强调:保留两位小数,只要除到小数点后第三位即可.
3.练习
计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.
28divide;18 2.29divide;1.1 153divide;7.2
(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?
1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.
2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10divide;3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.
三、课堂练习
(一)计算下面各题,哪些商是循环小数?
5.7divide;9 14.2divide;11 5divide;8 10divide;7
(二)下面的循环小数,各保留三位小数写出它们的近似值.
1.29090…… 0.0183838……
0.4444…… 7.275275……
四、布置作业
(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.
9.4divide;6 38.2divide;2.7 204divide;6.6 6.64divide;3.3
(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)
五年级数学教案设计篇3
一、准备练习
(一)口算
3.8+1.2 2.54 1.58
1.50.3 0.64+0.16 7.6+0.24
5-1.8 1.2580 3.64
6.3+2.45+3.7 3.56-1.57-0.43
0.87125 (2.5+0.9)4
(1.5+0.25)4 0.64+1.44
(二)口答,在□里填上适当的数.(说出依据)
1.3.18□=1.2□
2.(2.5+3.5)□=□□○□4
3.□+4.3=□+0.86
4.(2.51.2)□=1.2(□□)
5.7.6-2.8-□=□-(□+3.2)
(三)小结引入
我们运用一些运算定律或者运算性质可以使计算简便,在四则混合运算中,能不能运用这些运算定律和性质,使计算简便呢?
二、讲授新课
(一)教学例4
1.82.58+1.81.42
1.观察算式特点
2.学生试做
方法一:1.82.58+1.81.42 方法二:1.82.58+1.81.42
=1.8(2.58+1.42) =4.644+2.556
=1.84 =7.2
=7.2
3.观察比较:两种方法哪一种计算起来比较简便?
(第一种方法应用乘法分配律来计算,第二种方法只是根据一般的运算顺序)
4.练习
1.82.58+1.81.42+0.5
=1.8(2.58+1.42)+0.5 (乘法分配律)
=1.84+0.5
=7.2+0.5
=7.7
5.小结
通过刚才的练习,你对简算有什么新的认识?
三、巩固练习
(一)计算下面各题
1.561.7+0.441.7-0.7
11.72-7.85-(1.26+0.46)
(二)计算下面各题,能用简便算法的用简便算法
10.64+7.652.4+11.76
12.9〔14.66-(1.3+8.2)〕
9.83(3.8-2.3)+1.56.17
6.752-〔4.7(0.54-0.38)+2.8〕
15.4〔8(6.34-4.59)〕
(三)思考题:填同一个数
□-□+□+(□□□-□)=10
四、课堂小结
在四则混合运算中,有时虽然不能把整个题目简便计算,但是应该随时注意是不是有的步骤可以简算,能简算的,尽量使计算简便,不能简算的再按运算顺序计算.
五、课后作业
(一)计算下面各题,能用简便算法的用简便算法.
1.10.64+7.652.4+11.76
2.12.75[14.6-(1.3+8.2)]
3.9.831.5+6.171.5
4.15.4[8(6.34-4.59)]
(二)新兴煤矿七月份产煤4.85万吨,八月份产煤5万吨,九月份产煤5.65万吨.平均每月产煤多少万吨?
五年级数学教案设计篇4
教学内容:观察物体
教学目标:
1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。
2.培养学生从不同角度观察,分析事物的能力。
3.培养学生构建简单的空间想象力。
重点:帮助学生构建初步的空间想象力。
难点:帮助学生构建初步的空间想象力。
教学过程:
一、谜语导入
请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)
二、合作探究
(一)整体观察
1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:
你观察到的正方体是什么样的?
在你的位置上观察,你看到了哪几个面?
2.学生汇报交流。
学生自由走动,观察。汇报交流。
3.解释应用
教师出示两个正方体的立体图,一个有虚线,另一个没有。
提问:谁能用刚学到的知识解释一下正方体为什么这样画?
学生解释说明。
(二)分别从三个面进行观察(出示例1)
1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。
学生离开座位自由观察。
2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。
总结学生的发言:从不同的方向观察,所看到的形状是不一样的。
三、拓展应用
1.做教科书例2
2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。
学生玩游戏,教师指导。
四、总结
本节课你学会了什么?
五、作业布置
兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。
1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。
2.从一个面看到物体的形状,可以有多种不同的摆放方式。
3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。
五年级数学教案设计篇5
教学目标
1.通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算.
2.培养学生仔细、认真的学习习惯.
3.培养学生观察、演绎推理的能力.
教学重点
整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.
教学难点
整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.
教学过程
一、复习准备【演示课件“整数加法运算定律推广到分数加法”】
1.教师:整数加法的运算定律有哪几个?用字母怎样表示?
板书:a+b=b+a
(a+b)+c=a+(b+c)
2.下面各等式应用了什么运算定律?
①25+36=36+25
②(17+28)+72=17+(28+72)
③6.2+2.3=2.3+6.2
④(0.5+1.6)+8.4=0.5+(1.6+8.4)
教师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究.
二、学习新课【继续演示课件“整数加法运算定律推广到分数加法”】
1.出示:下面每组算式的左右两边有什么关系?
○○
教师说明:整数加法运算定律,对分数加法同样适用.
教师提问:整数加法的运算定律可以在什么范围内使用?
(加法的交换律、结合律中的数,既包括了整数,又包括了小数和分数)
2.出示例3计算:
观察:这些加数分母和分子有什么特点?
思考:怎样可以使计算简便?
学生口述,教师板书:
教师提问:这道题哪里应用了加法交换律?哪里应用了加法结合律?
最后结果要注意什么问题?
学生总结:应用整数加法的运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.
三、巩固反馈.
1.在下面的○里填上合适的运算符号.
①○
②○
2.用简便方法计算下面各题.【继续演示课件“整数加法运算定律推广到分数加法”】
①②
3.思考题:
已知你能很快算出的和吗?
四、课堂总结.
整数加法的交换律、结合律对分数加法同样适用,应用加法运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.
五、布置作业.
用简便方法计算下面各题.
六、板书设计
五年级数学教案设计
上一篇:六年级数学教案范文8篇
下一篇:四年级数学教案范本