欢迎访问范文百科-您身边的写作助手!

高一数学公式及知识点总结

androidx86.net 分享 时间: 加入收藏 我要投稿 点赞

对于高一学生来说,想要学好高中数学就要先掌握好数学公式。下面是小编给大家带来的高一数学公式,希望能帮助到大家!

高一数学公式1

【两角和公式】

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

【倍角公式】

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

【半角公式】

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

高一数学公式2

等差数列

1、等差数列的通项公式为:

an=a1+(n-1)d(1)

2、前n项和公式为:

Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式.

3、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N_,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.

和=(首项+末项)_项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

项数=(末项-首项)/公差+1

等比数列

1、等比数列的通项公式是:An=A1_q^(n-1)

2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)

且任意两项am,an的关系为an=am·q^(n-m)

3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

4、若m,n,p,q∈N_,则有:ap·aq=am·an,

等比中项:aq·ap=2arar则为ap,aq等比中项.

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.

性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap_aq;

②在等比数列中,依次每k项之和仍成等比数列.

“G是a、b的等比中项”“G^2=ab(G≠0)”.

在等比数列中,首项A1与公比q都不为零.

高一数学公式3

三角函数公式

两角和公式

sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

倍角公式

tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)

cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)

tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))

ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))

和差化积

2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

高一数学公式及知识点总结相关文章:

★ 2020最新高一数学重点公式总结三篇

★ 高一数学知识点整理归纳5篇精选

★ 高一数学知识点梳理整合最新五篇

★ 高一数学知识点总结人教版

★ 高一数学集合知识点归纳

★ 精选高一数学重点知识点归纳总结三篇

★ 最新人教版高一数学知识点总结五篇

★ 高一数学知识点大全5篇

★ 2020最新高一数学知识点5篇总结

★ 2020最全高一数学知识点总结归纳

221381
领取福利

微信扫码领取福利

微信扫码分享