欢迎访问范文百科-您身边的写作助手!

初二数学三角形教案15篇

七七范文 分享 时间: 加入收藏 我要投稿 点赞

初二数学三角形教案(15篇)

我们的教案内容涵盖了各个学科和年级,以满足不同教学需求。以下是小编为大家收集的初二数学三角形教案,欢迎阅读,希望大家能够喜欢。

初二数学三角形教案15篇

初二数学三角形教案(篇1)

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标:

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程:

一、复习引入,输入并贮存信息:

1.提问:如图,在Rt△ABC中,∠C=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠A、∠B有怎样的关系?

⑶边与角之间有怎样的关系?

2.提问:解直角三角形应具备怎样的条件:

注:直角三角形的边角关系及解直角三角形的'条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求AB可以解Rt△ABD和

Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

⑶解题过程,学生练习。

⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。

分析:

⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

解:设山高AB=x米

在Rt△ADB中,∠B=90°∠ADB=45°

∵BD=AB=x(米)

在Rt△ABC中,tgC=AB/BC

∴BC=AB/tgC=√3(米)

∵CD=BC-BD

∴√3x-x=20 解得 x=(10√3+10)米

答:山高AB是(10√3+10)米

三、归纳总结,优化信息

例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

练习3:在塔PQ的正西方向A点测得顶端P的

仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

五、作业布置,反馈信息

《几何》第三册P57第10题,P58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

初二数学三角形教案(篇2)

一、教学目标

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的'学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理1的应用.

2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

[讲解新课]

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

下面我们研究相似三角形的其他性质(见图).

建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比

初二数学三角形教案(篇3)

学习目标:

1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.

2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.

学习重点:

1.从现实情境中探索直角三角形的边角关系.

2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.

学习难点:

理解正切的意义,并用它来表示两边的比.

学习方法:

引导—探索法. 更多免费教案下载绿色圃中

学习过程:

一、生活中的数学问题:

1、你能比较两个梯子哪个更陡吗?你有哪些办法?

2、生活问题数学化:

⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?

⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?

二、直角三角形的边与角的关系(如图,回答下列问题)

⑴Rt△AB1C1和Rt△AB2C2有什么关系?

⑵ 有什么关系?

⑶如果改变B2在梯子上的位置(如B3C3)呢?

⑷由此你得出什么结论?

三、例题:

例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?

例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB的值.

四、随堂练习:

1、如图,△ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?

2、如图,某人从山脚下的点A走了200m后到达山顶的'点B,已知点B到山脚的垂直距离为55m,求山的坡度.(结果精确到0.001)

3、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.

4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.

5、如图,Rt△ABC是一防洪堤背水坡的横截面图,斜坡AB的长为12 m,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD,求DB的长.(结果保留根号)

五、课后练习:

1、在Rt△ABC中,∠C=90°,AB=3,BC=1,则tanA= _______.

2、在△ABC中,AB=10,AC=8,BC=6,则tanA=_______.

3、在△ABC中,AB=AC=3,BC=4,则tanC=______.

4、在Rt△ABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a=24,c= 25,求tanA、tanB的值.

5、若三角形三边的比是25:24:7,求最小角的正切值.

6、如图,在菱形ABCD中,AE⊥BC于E,EC=1,tanB= , 求菱形的边长和四边形AECD的周长.

7、已知:如图,斜坡AB的倾斜角a,且tanα= ,现有一小球从坡底A处以20cm/s 的速度向坡顶B处移动,则小球以多大的速度向上升高?

8、探究:

⑴、a克糖水中有b克糖(a>b>0),则糖的质量与糖水质量的比为_______; 若再添加c克糖(c>0),则糖的质量与糖水的质量的比为________.生活常识告诉我们: 添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个不等式: ____________.

⑵、我们知道山坡的坡角越大,则坡越陡,联想到课本中的结论:tanA的值越大, 则坡越陡,我们会得到一个锐角逐渐变大时,它的正切值随着这个角的变化而变化的规律,请你写出这个规律:_____________.

⑶、如图,在Rt△ABC中,∠B=90°,AB=a,BC=b(a>b),延长BA、BC,使AE=CD=c, 直线CA、DE交于点F,请运用(2) 中得到的规律并根据以上提供的几何模型证明你提炼出的不等式.

§1.1从梯子的倾斜程度谈起(第二课时)

学习目标:

1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.

2.能够运用sinA、cosA表示直角三角形两边的比.

3.能根据直角三角形中的边角关系,进行简单的计算.

4.理解锐角三角函数的意义.

学习重点:

1.理解锐角三角函数正弦、余弦的意义,并能举例说明.

2.能用sinA、cosA表示直角三角形两边的比.

3.能根据直角三角形的边角关系,进行简单的计算.

学习难点:

用函数的观点理解正弦、余弦和正切.

学习方法:

探索——交流法.

学习过程:

一、正弦、余弦及三角函数的定义

想一想:如图

(1)直角三角形AB1C1和直角三角形AB2C2有什么关系?

(2)有什么关系?呢?

(3)如果改变A2在梯子A1B上的位置呢?你由此可得出什么结论?

(4)如果改变梯子A1B的倾斜角的大小呢?你由此又可得出什么结论?

请讨论后回答.

二、由图讨论梯子的倾斜程度与sinA和cosA的关系:

三、例题:

例1、如图,在Rt△ABC中,∠B=90°,AC=200.sinA=0.6,求BC的长.

例2、做一做:

如图,在Rt△ABC中,∠C=90°,cosA= ,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达.

四、随堂练习:

1、在等腰三角形ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.

2、在△ABC中,∠C=90°,sinA= ,BC=20,求△ABC的周长和面积.

3、在△ABC中.∠C=90°,若tanA=

初二数学三角形教案(篇4)

教学目的

1.理解三角形、三角形的边、顶点、内角、外角等概念.

2.会将三角形按角分类.

3.理解等腰三角形、等边三角形的概念.

重点、难点

1.重点:三角形内角、外角、等腰三角形、等边三角形等概念.

2.难点:三角形的外角.

教学过程

一、引入新课

在我们生活中几乎随时可以看见三角形,它简单、有趣,也十分有用,三角形可以帮助我们更好地认识周围世界,可以帮助我们解决很多实际问题.

本章我们将学习三角形的基本性质.

二、新授

1.三角形的概念:

(1)什么是三角形呢?

三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形,这三条线段就是三角形的边.如图:AB、BC、AC是这个三角形的三边,两边的公共点叫三角形的.顶点.(如点A)三角形约顶点用大写字母表示,整个三角形表示为△ABC.

A(顶点)

B C

(2)三角形的内角,外角的概念:每两条边所组成的角叫做三角形的内角,如∠BAC.

每个三角形有几个内角?

三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如下图中∠ACD是∠ABC的一个外角,它与内角∠ACB相邻.

A

外角

B C D

与△ABC的内角∠ACB相邻的外角有几个?它们之间有什么关系?

练习:(1)下图中有几个三角形?并把它们表示出来.

A

D

B C

(2)指出△ADC的三个内角、三条边.

学生回答后教师接着问:∠ADC能写成∠D吗?∠ACD能写成∠C吗?为什么?

(3)有人说CD是△ACD和△BCD的公共的边,对吗?AD是△ACD和△ABC的公共边,对吗?

(4)∠BDC是△BCD的什么角?是△ACD的什么角?∠BCD是△ACD的外角,对吗?

(5)请你画出与△BCD的内角∠B相邻的外角.

2.三角形按角分类.

让学生观察以下三个三角形的内角,它们各有什么特点?并用量角器或三角板加以验证.

1 2 3

第一个三角形三个内角都是锐角;第二个三角形有一个内角是直角;第三个三角形有一个内角是钝角.

所有内角都是锐角的三角形叫锐角三角形;有一个内角是直角的三角形叫直角三角形;有一个内角是钝角的三角形叫钝角三角形.

三角形按角分类可分为:

锐角三角形(三个内角都是锐角)

直角三角形(有一个内角是直角)

钝角三角形(有一个内角是钝角)

3.等腰三角形、等边三角形的概念:让学生观察以下三个三角形,它们的边各有什么特点?

1 2 3

经过观察,测量可知:第一个三角形的三边互不相等;第二个三角形有两条边相等(AB=AC);第三个三角形的三边都相等.

(1)等腰三角形:两条边相等的三角形叫等腰三角形.

相等的两边叫做等腰三角形的腰,如上图(2)AB、AC是这个等腰三角形的腰.

(2)等边三角形;三条边都相等的三角形叫等边三角形(或正三角形)

问:等边三角形是不是等腰三角形?

[等边三角形是特殊的等腰三角形,但等腰三角形不一定都是等边三角形]

三角形按边来分,可分为:

三边都不相等的三角形

只有两边相等的三角形

等边三角形

三、巩固练习

教科书图9.1.6中找出等腰三角形、正三角形、锐角三角边、直角三角形、钝角三角形.

四、小结

1、三角形的概念,一个三角形有三个顶点,三条边,三个内角,六个外角,和三角形一个内角相邻的外角有2个,它们是对顶角,若一个顶点只取一个外角,那么只有3个外角.

2.三角形的分类:按角分为三类:

①锐角三角形,

②直角三角形,

③钝角三角形按边分为三类:

①三边都不相等的三角形;

②等腰三角形.

等边三角形只是等腰三角形中的一种特殊的三角形.

五、作业

教科书第61页练习1、2.

初二数学三角形教案(篇5)

一、学生起点分析

学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?

反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中

可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。

二、学习任务分析

本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理

并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:

● 知识与技能目标

1.理解勾股定理逆定理的具体内容及勾股数的概念;

2.能根据所给三角形三边的条件判断三角形是否是直角三角形。

● 过程与方法目标

1.经历一般规律的探索过程,发展学生的抽象思维能力;

2.经历从实验到验证的过程,发展学生的数学归纳能力。

● 情感与态度目标

1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;

2.在探索过程中体验成功的喜悦,树立学习的自信心。

教学重点

理解勾股定理逆定理的具体内容。

三、教法学法

1.教学方法:实验猜想归纳论证

本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验

但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:

(1)从创设问题情景入手,通过知识再现,孕育教学过程;

(2)从学生活动出发,通过以旧引新,顺势教学过程;

(3)利用探索,研究手段,通过思维深入,领悟教学过程。

2.课前准备

教具:教材、电脑、多媒体课件。

学具:教材、笔记本、课堂练习本、文具。

四、教学过程设计

本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:

登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。

第一环节:情境引入

内容:

情境:1.直角三角形中,三边长度之间满足什么样的关系?

2.如果一个三角形中有两边的'平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?

意图:

通过情境的创设引入新课,激发学生探究热情。

效果:

从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。

第二环节:合作探究

内容1:探究

下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:

1.这三组数都满足 吗?

2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。

意图:

通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

效果:

经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。

从上面的分组实验很容易得出如下结论:

如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

内容2:说理

提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?

意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:

如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

满足 的三个正整数,称为勾股数。

注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。

活动3:反思总结

提问:

1.同学们还能找出哪些勾股数呢?

2.今天的结论与前面学习勾股定理有哪些异同呢?

3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?

4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?

意图:进一步让学生认识该定理与勾股定理之间的关系

第三环节:小试牛刀

内容:

1.下列哪几组数据能作为直角三角形的三边长?请说明理由。

①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

解答:①②

2.一个三角形的三边长分别是 ,则这个三角形的面积是( )

A 250 B 150 C 200 D 不能确定

解答:B

3.如图1:在 中, 于 , ,则 是( )

A 等腰三角形 B 锐角三角形

C 直角三角形 D 钝角三角形

解答:C

4.将直角三角形的三边扩大相同的倍数后, (图1)

得到的三角形是( )

A 直角三角形 B 锐角三角形

C 钝角三角形 D 不能确定

解答:A

意图:

通过练习,加强对勾股定理及勾股定理逆定理认识及应用

效果

每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。

第四环节:登高望远

内容:

1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?

解答:符合要求 , 又 ,

2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?

解答:由题意画出相应的图形

AB=240海里,BC=70海里,,AC=250海里;在△ABC中

=(250+240)(250-240)

=4900= = 即 △ABC是Rt△

答:船转弯后,是沿正西方向航行的。

意图:

利用勾股定理逆定理解决实际问题,进一步巩固该定理。

效果:

学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。

第五环节:巩固提高

内容:

1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。

解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF

2.如图5,哪些是直角三角形,哪些不是,说说你的理由?

图4 图5

解答:④⑤是直角三角形,①②③⑥不是直角三角形

意图:

第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。

效果:

学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。

第六环节:交流小结

内容:

师生相互交流总结出:

1.今天所学内容

①会利用三角形三边数量关系 判断一个三角形是直角三角形;

②满足 的三个正整数,称为勾股数;

2.从今天所学内容及所作练习中总结出的经验与方法:

①数学是源于生活又服务于生活的;

②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;

③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。

意图:

鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。

效果:

学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。

第七环节:布置作业

课本习题1.4第1,2,4题。

五、教学反思:

1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。

2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。

4.注重对学习新知理解应用偏困难的学生的进一步关注。

5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。

由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。

附:板书设计

能得到直角三角形吗

情景引入 小试牛刀: 登高望远

初二数学三角形教案(篇6)

【教学目标】

1、认知目标:经历三角形面积计算公式的探索过程,推导出三角形的面积计算公式,掌握求三角形面积的计算方法。

2、能力目标:通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。同时学生通过自主探索学习活动,提高实际操作、自主探索能力及运用三角形的面积公式解决实际问题的能力。

3、 情感目标:在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。

【教学重点】

推导、掌握三角形面积的计算公式。

【教学方法】

探究发现法和讨论法.

【教学准备】

教具:多媒体课件、红领巾实物。

学具:剪刀、各种不同类型的三角形等。

【课时安排】

一课时

【教学过程】

一、创设情境

1、师:细心的同学可能已经发现今天老师有什么不同?对老师今天也配戴了红领巾!这是与我们朝夕相处的红领巾,它是红旗的一角,记得20多年前每当老师佩上戴红领巾时心中和你们一样充满了无比的骄傲和自豪,可你们想不想知道一条红领巾的面积呢?(把红领巾展开贴在黑板上)

2、揭题:(想)那就得知道怎样求三角形的面积,今天这节课就我们一起来探究这个问题好吗?(教师板书课题:三角形的面积)

二、自主探索,合作交流

1、回忆平行四边形的推导过程,启发学生运用所学的方法,探究三角形面积计算公式。

师:前面我们学习了长方形、正方形、平行四边形的面积,那么我们回忆一下,在学习的平行四边形面积时是用什么方法求出平行四边形面积的?

生:将平行四边形转化成长方形,通过长方形面积公式推导出平行四边形面积公式。

师:平行四边形的面积公式是什么?

生:平行四边形的面积=底×高

(教师板书)

师:那么我们能不能也用转化的方法来探究如何计算三角形面积呢?想一想,你会怎样做一下,怎样用转化的方法来探究三角形的面积。

生:可以拼、剪,

师:你是怎样具体操作的?小组里的同学可以互相合作实验怎样用转化的方法来探究三角形的面积。师出示要求和发放实验报告。

2、学生拿出老师为其准备的实验材料,自行拼图,教师参与到小组中,去引导。

3、小组派代表上黑板前展示拼的过程,展示时重点引导学生观察、发现三角形与拼成的长方形或平行四边形的关系。选择有代表性的三组,请学生说出拼的过程。填写实验报告。

(为了使学生能看清每个小组拼的过程,教师课件演示。)

4、归纳概括,推导公式。(让学生试着概括)

生:我们拿两个完全一样的三角形,会拼成一个平行四边形。因为每个三角形的面积等于拼成的这个平行四边形面积的一半。平行四边形的面积=底×高,所以这个三角形的面积=底×高÷2。

(教师总结,课件出示)

师:大家看到了,前面这几组同学都是将两个完全一样的三角形拼成了一个平行四边形,探究出平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,每个三角形的面积等于拼成的平行四边形面积的一半。

因为三角形的面积等于拼成的平行四边形面积的一半,所以,三角形的面积=底×高÷2为什么除以2?

生:因为平行四边形的面积=底×高,三角形的面积等于拼成的平行四边形面积的一半,所以除以2。

5、完成例2

师:现在你会求红领巾的面积了吗?需要知道什么条件?出示条件生独立完成。指一名板演

三、实践运用,拓展创新

1、小试身手:计算三种三角形的面积:(课件出示)

(1)底3cm,高4cm (2)底4cm,高1.5cm(3)底2cm,高3cm

2、小小判官:

(1)两个形状一样的三角形,可以拼成一个平行四边形......()

(2)平行四边形面积一定比三角形面积大......( )

(3)一个平行四边形与一个三角形等底等高,那么平行四边形的面积一定是三角形的2倍.......( )

3、生活中的数学:你认识下面的这些道路交通警示标志吗?

我们学校的上下两个路口在放学时经常交通混乱,为了改变这种状况,交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?(底9dm,高7.8dm)

4、已知一个三角形的面积和底,求高。

5、下图中哪个三角形的面积与画阴影三角形的面积相等,为什么?你能在图中在画一个与画阴影的三角形面积相等的三角形吗?试试看。

四、小结

师:通过这节课的探索学习,你有什么收获?

生:我们知道了三角形的面积计算方法,还会用它来进行计算。

生:这节课我们通过自己动手动脑推导出来了三角形的面积公式,我真是太高兴了!

师出示学习材料,学生阅读后谈感想。体会祖国的古代科学家得了不起,

师:2000多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?

初二数学三角形教案(篇7)

教学内容:

人教版义务教育课标实验教材数学四年级下册第80页

教学目标:

1. 使学生认识什么样的图形叫三角形,知道三角形的特征和按角分类的方法,掌握三角形的特性。

2. 能够识别锐角三角形、直角三角形和钝角三角形,关知道它们三者之间的关系。

3. 渗透观察比较、抽象概括和迁移推理等数学思维方法。培养学生发现欣赏的意识,感受生活中数学,激发学习兴趣。

教学过程:

一、认识三角形

1. 摆三角形

(1)(课件演示)老师给大家准备了一些图片,仔细观察:看看这些事物中都有我们学过的哪些图形?(欣赏两遍)

(三角形、圆形、梯形……)

这节课我们来重点研究三角形

板书:三角形的认识

(2)(准备小棒)现在想想三角形是什么样子的?听要求:请用手中的小棒快速地摆一个三角形。(生动手摆三角形,同时老师在黑板上画三角形)

2. 三角形的特性

(1)师拿出准备好的插接长方形,问:这是什么图形?

师拉动长方形,问:你发现了什么?

(长方形变化了,说明它不稳定)

(2)拉一拉刚才的三角形,你发现了什么?

(没有变化,说明三角形具有稳定性)

板书:稳定性

三角形的稳定性是三角形的特性,在实际生活中有着非常广泛的应用,谁能说说日常生活中都有哪些地方运用了三角形的稳定性?

二、三角形的特征

1. 什么是三角形

刚才我们动手摆了三角形,还知道了三角形具有稳定性,你认识三角形了吗?

出示:

手势表示哪个是三角形?

根据刚才的学习谁能用一句话简单地说说什么是三角形?

(重点引导学生理解“围成”)

板书:由三条线段围成的图形叫三角形

2. 三角形的各部分名称

猜测:围成三角形的每条线段叫什么?(边)三角形一共有几条边?(3条边)

每两条边线段的交点叫什么?(顶点)三角形一共有几个顶点?(3个顶点)

仔细观察三角形除了有三条边,三个顶点之外,还有什么?(3个角)

谁能说说三角形有什么特征?(三角形有3条边,3个顶点,3个角)

生回答师板书。

三、三角形的分类

1. 分类

2. 刚才大家表现非常棒,积极动脑思考,回答问题也非常积极,那现在看看大家的动手能力和大家的合作能力怎么样?

出示六种三角形

看要求:(课件演示)给这些三角形分类:

要求:

(1)给每类三角形取个名字。

(2)小组说说为什么这样取名?

生运用学具小组合作,老师巡回指导。

生汇报,师总结板书:

锐角三角形 1个? 3个?

直角三角形 1个

钝角三角形 1个

3、小游戏:

猜角游戏 师只露出一个角,生猜这是什么三角形?

说说什么是锐角三角形、直角三角形、钝角三角形。

四、小结:通过这一节课的学习你学到了什么知识?

考考你:

选择:

(1)由三条( )围成的图形叫三角形。

A直线 B射线 C线段

(2)( )的三角形叫锐角三角形。

A有一个角是锐角 B有两个角是锐角 C有三个角是锐角

判断:

(1) 有三条线段的图形一定是三角形。

(2) 任何三角形里都有两个锐角。

(3) 直角三角形中只有一个角是直角。

(4) 有位同学看到三角形中有一个锐角,就说这个三角形是锐角三角形。

初二数学三角形教案(篇8)

教学目标:

1、通过动手操作和观察比较,使学生认识三角形,直到三角形的特性及三角形高和底的含义,会在三角形内画高。

2、通过实验使学生知道三角形的稳定性及其在生活中的应用。

3、体会数学与生活的联系,培养学生学习数学的兴趣。

重点:

理解三角形的定义,掌握三角形的特性。

难点:

不同三角形的高的画法。

教具准备:

PPT、三角板

学具准备:

小棒、白纸、铁丝、三角形、稳定性学具

教学过程:

一、引入

1、教师出示三角形,提问:这是什么图形?学生回答后板书课题

2、在哪看到过这种图形?(生举例)

二、教学三角形的定义

1、师:想不想自己动手做一个三角形。拿出老师为你们准备的学具做一个三角形。(学生动手操作)

展示学生的作品:

生1:用小棒摆的一个三角形

师:你们对他摆的三角形有什么想说的吗?

生:他摆的三角形小棒与小棒处没有粘牢。

师:你愿意上来让这个三角形变得更完美些吗?

生2:用白纸折了后剪出来的一个三角形。

生3:用铁丝折的一个三角形

师刚展示,就有学生在下面提意见:那不是三角形?

师:你为什么认为这个不是三角形?

生:它没有封口。

师:其他同学的意见呢?

师动手捏住铁丝的两头问:这样是一个三角形了吗?

2、师:现在我们说也说了,做也做了,那谁能说说什么样的图形式三角形呢?同桌交流

3、学生回答,教师不断完善。得出三角形的定义:由三条线断围成的图形叫三角形。

4、提问:什么叫围成?学生齐读三角形的定义

5、师:接下来让我们当一回小法官,判断一下上面的图形式不是三角形。(PPT出示)

5、自己动手画一个三角形。教师也在黑板上画一个三角形。

(反思:关于三角形的知识学生在三年级的时候就已经接触过,关于三角形的定义作业本中也曾以判断的形式出现过,因此备这节课的时候,一直在犹豫,是直接以提问形式出现:“关于三角形的知识,你都知道哪些?”还是先建立表象,再得出定义。最终还是采用了第二种方法。课堂中学生表现出来的问题,也都掉进了自己预设的陷阱中:如用小棒摆的三角形连接点超出了,用铁丝围的三角形连接点没围住,教师抓住了学生的这些生成进行及时的反馈,一步一步让学生理解什么是“围成”,突破了教学中的第一难点。)

三、教学三角形个部分的名称、(承接上面的环节)刚才有人提到了三角形的边,谁来指指这三角形的边在哪儿?(学生上来指)

师手指三角形的顶点问:“这叫三角形的什么”?手指角问:“这又叫三角形的什么?”

教师边说边板书:咦,原来三角形有三个顶点、三条边、三个角。

2、在刚才自己画的三角形中标出各部分名称,然后和同桌说一说。

3、小游戏:师:每一个顶点都有它对应的边,现在我们来做一个小游戏,老师指定点,你们来指出它对应的边。

4、命名:我们每个人都有自己的名字,三角形也有,数学上通常用三个连续的大写字母a、b来表示三角形的三个顶点,这个三角形就叫做三角形abc,这个顶点就叫做顶点a、定点b、定点c;这条边就叫做线段ab、线段ac、线段bc

师:给你的三角形也起个名字吧!(学生起名)

师:让我们认识一下你画的三角形(生手举三角形,并说这是三角形__)

(反思:上学期教学画平行四边形和梯形的高时,发现学生顶点和对应的边很会搞错,因此这儿设计了了一个小游戏,本意就是为学生在下面一个环节画高做准备,但就像云外天所说,如果把这个环节与后面的画高结合起来进行教学,课堂就更精彩。)

三、教学三角形的稳定性

1、师:早我们的生活中三角形运用的很广泛,老师也采集了一些,一起来看看:(出示PPT)请学生指一指三角形在哪儿?

2、师:为什么设计师都到用三角形而不用别的图形呢?(引出三角形的稳定性)

3、师:真的是这样吗?想不想动手来验证一下(学生拿出学具进行操作)

4、三角形的稳定性给我们的生活带来了很大的用处,你还能举出生活中应用三角形稳定性的例子吗?

(反思:让学生通过动手操作理解三角形的稳定性,本是个很好的教学设计。但是学生在进行学具操作时,教师过于心急,对学生的操作有太多的指导,导致这个环节失去了原有的功效)

四、画高

1、老师这儿有一个三角形,从一个顶点出发向对边画了好几条线段(PPT出示)哪一条最短?为什么?引出高。

2、那什么叫高呢?教师边在PPT上演示,边介绍:从一个顶点出发,到它的对边画一条垂直线段,这条垂直线段就是三角形的高,这条边叫三角形的底。

3、看书,书中是怎样介绍三角形的高和底的。

4、锐角三角形:教师演示画高,学生在自己画的三角形上画高。

师:刚才我们是从一个顶点出发向它的对边画了一条高,如果从另外的顶点出发,你会画高吗?想想三角形的高有几条?为什么?(学生画高,投影仪上展示学生的作品)

5、直角三角形:出示学生自己画的直角三角形:刚才有同学遇到了困难。像这样的三角形怎样画高?(学生回答并在练习纸上画出以最长的那条边为底边的三角形的高)

6、钝角三角形:教师出示:像这样的三角形也有三条高,今天我们只画斜边上的高。学生动手画高,展示作品。

五、应用

1、师:今天我们又重新认识了三角形,你能说说你又了解了三角形的哪些知识?

2、出示:小红家的椅子用了很多年了,已经摇摇晃晃,你能帮他修好吗?

(反思:这个环节教师稍微进行了一下拓展,因为例题中只出现画锐角三角形的高,而且关于角的分类是安排在例4。但从学生的掌握程度来看,学生还是掌握的较好。画锐角三角形的高的过程中教师也发现了一个问题:很多学生画的锐角三角形的三条高没有相交于一点,因时间关系,教师只是点了一下,在画高的细节上教师还应强调。)

初二数学三角形教案(篇9)

教学目标:

1、知识与技能:

(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

(2)培养学生应用已有知识解决新问题的能力。

2、过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3、情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:

探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学难点:

三角形面积公式的推导过程。

教学关键:

让学生经历实际操作、合作交流、归纳发现和抽象公式的过程。

教具准备:

红领巾、长方形纸片、两个完全一样的三角形各三组、剪刀等。

学具准备:

每个小组至少准备一个长方形,完全一样的直角三角形、锐角三角形、钝角三角形各两个,剪刀。

教学过程:

一、创设情境,揭示课题

师:今天老师有什么不同?老师今天也配带了红领巾!你们能帮忙算算做一条红领巾要用多少布吗? (把红领巾展开贴在黑板上)

教师提出问题:

⑴红领巾是什么形状的?(三角形)。

⑵你会算三角形的面积吗?

师:这节课我们一起来学习探索三角形面积的计算方法。

板书:三角形的面积

[设计意图:利用学生身上熟悉的红领巾实物,首先由计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,激起了学生的求知欲,从而将“教学活动”转化为“学习活动”。]

二、探索新知

1、寻找思路:(出示一个长方形)

师:

(1)长方形面积怎样计算?

(2)怎样可以把这个长方形平均分成两份?

有三种方法:

方法一:方法二: 方法三:

师:方法三中把长方形平均分成两个三角形,大小有什么关系?(完全一样)

每个三角形面积与原长方形的面积有什么关系?

[设计意图:通过把长方形平均分成两个三角形,学生在直观观察的基础上通过建立与长方形及面积的比较,直接感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,引发了深层次的心理动机]

生:长方形的面积=长×宽

生:哪么,剪成的每个直角三角形的面积等于原长方形的面积的一半,三角形的底等于原长方形的长,三角形的高是原长方形的宽,也就是直角三角形的面积等于底乘高除以二。

板书:三角形的面积=底×高÷2(直角三角形)

师:你想,直角三角形的面积可以这样计算,是不是所有的三角形的面积都可以用这种方法去计算呢?今天我们一起来探讨。上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?(挂出课本84页主题图让学生观察、引发思考)

接着出示思考题:

(1)将三角形转化成学过的什么图形?

(2)每个三角形与转化后的图形有什么关系?

[设计意图:学生已经学习了平行四边形面积公式的推导过程,启发学生:能不能把三角形也转化成已学过的图形来求它的面积呢?在讲授公式来由之前,以动手把长方形平分成两份的实验,直接引出直角三角形的面积计算方法,做到先入为主的作用,引导学生去猜想。再让学生自己找到新旧知识间的联系,使旧知识为新知识的铺垫。]

2、分组操作、讨论,合作学习。

(1)提出操作和思考要求。

学生用课前准备的三种类型三角形(完全一样的各两个),四人为一小组合作动手拼一拼、摆一摆。

小黑板出示讨论问题:

①用两个完全一样的三角形拼一拼,能拼出什么图形?

②拼出的图形的面积你会计算吗?

③拼出的图形与原来三角形有什么联系?

(2)学生以“四人小组”为单位进行操作和讨论。

[设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形的面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又中从找到对应关系,渗透了对应关系的教学。]

平移

旋转180°

合拼

教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学生:你是怎样拼的?能说一说你的拼法吗?(如果学生操作有困难,教师可以适当引导学生操作:摆出两个完全一样的三角形,把其一个三角形旋转、移动,和另一个三角形拼成一个平行四边形。如图,让学生模仿练习)

[设计意图:让学生找到了新旧知识的连接点与转化方式,使学生正确掌握操作方法,要求学生表述操作过程,规范学生的数学语言,培养学生的口述能力,提高学生的操作技能。]

(3)学生上讲台板演。

①小组汇报实验情况。(让学生将转化后的图形贴在黑板上,然后口述操作过程。)

可能出现以下情况:(用两个完全一样的三角形摆拼)

(两锐角三角形) (两钝角三角形) (两直角三角形)

平行四边形平行四边形长方形

②学生演示:用旋转平移的方法将三角形转化成各种已学过的图形。

师:通过动手操作,你们发现了什么?

引导学生得出:只要是两个完全一样的三角形都可以拼成一个平行四边形。(或长方形)

师:每个三角形的面积与拼成的平行四边形的面积有什么关系?

生:每个三角形的面积是拼成的平行四边形的面积的一半。

生:拼成的平行四边形是每个三角形面积的二倍。(教师给予评价、肯定)

[设计意图:通过动手操作和小组合作学习,再观察演示使同学们更具体、清晰地弄清了将两个完全一样的三角形拼成平行四边形后,它们之间到底有什么关系。让学生通过推导,增强学生探索的兴趣,提高学生推理的能力。]

3、讨论与归纳公式

(1)讨论:(小黑板出示问题)

①、三角形的底和高与平行四边形的底和高有什么关系?

②、怎样求三角形的面积?

③、你能归纳出三角形的面积计算公式吗?

[设计意图:借助图形直观性,教师指明讨论的部分是三角形的底和高与平行四边形的底和高的关系,有助于学生进行推理,加深对三角形的面积计算公式的理解,同时又渗透了转化的数学思维,突破了教学难点,提高学生的推理、思维能力和课堂教学效率。]

(2)归纳公式。

学生讨论、汇报:

因为:三角形面积=拼成的平行四边形面积÷2

所以:三角形面积=底×高÷2

教师板书:三角形面积=底×高÷2

师:为什么要除以2?

生:因为是两个完全一样的三角形拼成一个平行四边形,所以三角形的面积是拼成的平行四边形面积的一半

师:如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗?

结合学生回答,教师板书:s=ah÷2

[设计意图:把求三角形的面积转化成已学习过的平行四边形面积,找到它们之间的关系,使学生感知了三角形面积的计算后,去讨论:“三角形面积的计算公式是怎样的?” “为什么要除以2?”以先入为主,从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,突破教学的重点和难点,增强学生探究的兴趣、提高学生推理的能力,培养学生的抽象概括能力。]

4、看书质疑。

师:你能说说,课本中是怎样得出三角形的面积计算公式的?

(充分利用好教材,学生加深对知识的认知,养成看书的良好习惯。)

师:除了用两个完全一样的直角三角形、锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的。你还能用别的方法去推导三角形的面积公式吗?

如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定。(略讲)

三、应用新知,解决问题

师:现在同学们能帮老师解决问题了吗?

1、计算一条红领巾的面积。

师:你能估算出这条红领巾的底和高各是多少吗?

生:……

师:这条红领巾的底是100cm,高是33cm,你能计算出它的面积是多少吗?

学生独立完成,让一位学生到黑板上板演;全班交流做法和结果,老师提出书写格式和应注意地方。

师:计算三角形的面积,应注意什么地方?(强调“÷2”和“底和高要对应”这两个重点、难点。)

12.5 cm

2、独立完成p85做一做。

学生板演,教师点评。

[设计意图:应用三角形的面积的计算公式解决问题,巩固本节课的新知识点和应注重的要点,让学生进一步加深对公式的印象。]

四、深化理解、应用拓展

1、课本86页的练习第1题。 (课件出示)

师:你认识这些道路交通警示标志吗?一块标志牌的面积大约是多少平方分米?

(让学生认识多种交通指示牌,教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算。)

2、课本86页第2题:你能想办法计算出每个三角形的面积吗?。

师:要求上面每个三角形的面积,需要知道什么条件呢?要怎么做?

(先让学生想,再请学生口头叙述,最后让学生动手操作计算、评讲,培养学生的数学语言表达能力。)

3、判断题

(1)三角形面积是平行四边形面积的一半。 ( )

(2)一个平行四边形面积是40平方米,与它等底等高三角形面积为20平方米。( )

(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。 ( )

(4)等底等高的两个三角形,面积一定相等。 ( )

(5)两个三角形一定可以拼成一个平行四边形。 ( )

4dm

2。5dm

3dm

4、求右图三角形面积。

(要计算上图的三角形面积,强调三角形的底和高一定是对应的。)

5、课本86页第3题:已知一个三角形的面积和底

(如右图),求高。

师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗?

(生讨论汇报,再计算、反馈。)

6、做课本86页第4题(然后汇报、评讲。)

要在公路中间的一块三角形空地(见下图)上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元?

[设计意图:练习题以三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解,突破公式中重点和难点;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过拓展题练习,训练学生思维的灵活性与逆向思维能力,拓展学生数学思维,同时深化对三角形面积公式的理解。]

五、总结

师:今天这节课,我们主要学习了什么知识?你有什么收获?

(小出示)让学生说一说图意:

生:……

师:很好!今天我们通过分“四人小组”动手操作,相互讨论、交流,用摆拼的方法将三角形转化成学过的平行四边形推导出了三角形面积的计算公式,这种“转化”的数学思维方法能帮助我们找到探究问题的方法,今后能应用这一数学方法探究和解决更多的数学问题。

[设计意图:这两问引导学生从学习内容及学习方法对本课归纳出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于思考的能力。]

六、课外作业

课本第87页“练习十六”第5、6、7题。

板书设计

三 角 形 的 面 积

平行四边形的面积=底×高

s=ah÷2

=100×33÷2

=1650(cm)

三角形面积=底×高÷2

s=ah÷2

教学反思:

本节内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形的面积计算公式。根据新课程中的新理念要求,教学应该由原来 “教学活动”转化为“学习活动”,引导学生学会学习。因此,在教学中教师应注重学生自己动手操作,从操作中掌握方法,发现问题和解决问题。

一、小组结合动手操作

在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。

二、引导学生发现问题、思考问题,培养合作精神

在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的?在探讨这个问题时,今后可采用小组讨论的方式,在讨论中发现问题,解决问题,教师不能包办。三角形面积公式中的“除以2”的教学中,应重点的强调讲述其意义。加强小组讨论,既可培养学生的合作精神,又可活跃课堂气氛。

三、应用公式解决生活中的问题

新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形的面积计算公式解决实际问题。练习题应扩展开,出些拓展练习题开发学生数学思维,这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。

此外,在这节课的教学过程中,我发现了自己平时教学方式上的不足。例如学生在回答问题时,没能有效地引导学生归纳知识,从而培养学生的数学表达能力和数学语言,今后要注意在教学中的不足。

初二数学三角形教案(篇10)

教学目标

1.知道什么是全等形、全等三角形及全等三角形的对应元素;

2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;

3.能熟练找出两个全等三角形的对应角、对应边。

教学重点

全等三角形的性质。

教学难点

找全等三角形的对应边、对应角。

教学过程

一、提出问题,创设情境

1、问题:你能发现这两个三角形有什么美妙的关系吗?

这两个三角形是完全重合的

2、学生自己动手(同桌两名同学配合)

取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。

3、获取概念

让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。

形状与大小都完全相同的两个图形就是全等形。

要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同。

概括全等形的准确定义:能够完全重合的两个图形叫做全等形。请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义。仔细阅读课本中"全等"符号表示的要求。

二、导入新课

将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED。

议一议:各图中的两个三角形全等吗?

不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED。

(注意强调书写时对应顶点字母写在对应的位置上)

启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略。

观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?

(引导学生从全等三角形可以完全重合出发找等量关系)

得到全等三角形的性质:全等三角形的对应边相等。全等三角形的对应角相等。

[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角。

问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?

将△OCA翻折可以使△OCA与△OBD重合。因为C和B、A和D是对应顶点,所以C和B重合,A和D重合。

∠C=∠B;∠A=∠D;∠AOC=∠DOB。AC=DB;OA=OD;OC=OB。

总结:两个全等的三角形经过一定的转换可以重合。一般是平移、翻转、旋转的方法。

[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来。

根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素。常用方法有:

(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边。

(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角。

解:对应角为∠BAE和∠CAD。

对应边为AB与AC、AE与AD、BE与CD。

[例3]已知如图△ABC≌△ADE,试找出对应边、对应角。(由学生讨论完成)

借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边。而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了。再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角。所以说对应边为AB与AD、AC与AE、BC与DE。对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED。

做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合。这时就可找到对应边为:AB与AD、AC与AE、BC与DE。对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED。

三、课堂练习

课本练习1。

四、课时小结

通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素。这也是这节课大家要重点掌握的

找对应元素的常用方法有两种:

(一)从运动角度看

1、翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素。

2、旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素。

3、平移法:沿某一方向推移使两三角形重合来找对应元素。

(二)根据位置元素来推理

1、全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边。

2、全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角。

五、作业

课本习题1

课后作业:《新课堂》

初二数学三角形教案(篇11)

教材简析:

“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。

教学内容:

苏教版标准实验教科书《数学》五年级上册P15~P16的内容,三角形的面积。

教学目标:

1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重、难点:

重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。

教、学具准备:

CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。

教学过程:

一、创设情境、导入新课

1、提出问题。

师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?

2、揭示课题。

师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)

二、操作“转化”,推导公式

1、寻找思路。

师:是的,我们还不会计算三角形的面积。那同学们想一想,开始我们同样不会计算平行四边形的面积,后来我们通过什么方法推导出了平行四边形的面积计算公式的呢?

师:对,我们用“割补”的.方法把平行四边形“转化”(板书:转化)成了一个长方形,这样推导出了平行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?

师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?

[应变预设:同学们根据已有的经验,一般会认为可以用这种方法,教师可以选择一种方法实际“割补”,让学生明白这种方法不好,需要寻找更好的方法。]

2、动手“转化”。

师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。

小组合作拼组图形,教师巡视指导。

[应变预设:可能有些同学不会拼组,教师可指导他们用旋转、平移等方法,把两个完全一样的三角形拼成一个平行四边形或一个长方形。]

师:拼好了吗?用这种拼一拼的方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?

[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]

师:同学们,为什么有些小组拼成了一个平行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?

[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]

3、尝试计算。

师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。

师:这个平行四边形就是由两个完全相同的三角形拼成的,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?

[评析:引导学生说出拼成的平行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]

师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。

师:算完了吗?它的面积是多大?

师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。

[应变预设:在设法求三角形的面积时,可能有部分同学不明白三角形的面积和平行四边形面积之间的关系,不会计算。这时教师应引导学生明确每个三角形的面积是拼成的平行四边形面积的一半,计算三角形的面积可用平行四边形的面积除以2得出。]

初二数学三角形教案(篇12)

一、教学内容

《义务教育教科书(五·四学制)·数学(四年级下册)》22~23页。

二、教学内容

1、掌握三角形的面积计算公式,并能正确计算三角形的面积。

2、经历探索三角形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

3、能运用三角形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。

三、教学重点

探究三角形面积的计算方法。

四、教学难点

把三角形转化成平行四边形,探究平行四边形与三角形之间的关系,推导三角形面积的计算公式。

五、教学准备

三角形卡片、多媒体课件。

六、教学过程

(一)创设情境,提供素材

师:同学们,这节课,让我们一起走进生产车间,看看工人制作标志牌的场景。

课件出示图片。(见图1)

师:你想提出什么数学问题?

预设:制作这个标志牌需要多少平方分米的铝皮?

师:标志牌是一个什么图形?

预设:三角形。

师:那么求这块标志牌的面积也就是求什么的面积?

预设:求三角形的面积。

师:今天我们就来研究三角形的面积。

教师适时板书:三角形的面积。

设计意图:

从学生容易感兴趣的情境问题入手,激发学生的好奇心、求知欲,使学生积极投入到探索性的数学活动中。

(二)积极思考,引导猜想

师:三角形的面积是什么?谁来猜猜看?

预设1:底乘高。

预设2:三边相乘。

师:那你们想怎么来研究它?

预设:把它转化成以前学过的图形。

师:你怎么想到用转化?

预设1:因为三角形没学过,转化成以前学过的图形就能研究了。

预设2:我们上节课学习的平行四边形的时候用的就是转化的思想。

师:转化后再怎么研究?

预设1:看转化后的图形和原来三角形之间的关系。

预设2:根据关系推导出三角形面积计算公式。

预设3:我们研究平行四边形的时候就是这样研究的。

师:你们真是很有想法!想到用研究平行四边形面积的方法来研究三角形的面积。老师帮你们把你们提出的这个研究思路梳理一下。

设计意图

学生经过大胆地猜测,好奇心被激发起来,自觉运用知识进行迁移,由于之前刚刚学完平行四边形的面积,学生充分经历的推导过程,学生自然会想到“转化”的数学思想方法。

(三)操作验证,总结公式

师:在学习材料包里有好多三角形,下面我们来同桌合作,根据这个思路来研究研究看,开始吧。

学生活动,教师搜集不同素材。

师:哪个小组愿意先上来汇报一下你们的研究成果?

小组为单位上台汇报锐角、直角、钝角三角形的研究成果。

师:老师发现,你们的想法不谋而合,都是把三角形转化成了平行四边形。在操作的时候,我们可以将两个完全一样的三角形重合,其中一个绕顶点旋转180度后平移,就能得到平行四边形。

课件适时展示旋转过程。

师:那是不是所有的三角形都有这样一个关系呢?

预设:按角分,三角形可以分成这三类,经过研究我们发现这三类三角形都是与它等底等高的平行四边形面积的一半。这三类三角形都符合,我们就不需要再验证了。

师:那我们可以得到结论了吗?

学生回答,教师适时板书:三角形的面积=底×高÷2

师:如果三角形的面积用S表示,底用a表示,高用h表示,怎么用字母来表示?

学生回答,教师适时板书:S=ah÷2

师:对于三角形的面积公式,你有什么要问的吗?

预设:为什么要除以2?

师:哪位同学能帮着回答一下?

预设:我们是用两个完全一样的三角形拼成的平行四边形,那么一个三角形的面积就要用平行四边形的面积除以2。

设计意图

通过学生大胆猜测,选择图形—动手操作—观察、交流、讨论—汇报得出公式的系列过程,可以使学生很自然地产生,一步步向前探索的需要。学生既理解公式的来龙去脉,又实实在在经历探究与发现的全过程,既让学生掌握探索问题的一般方法,又使学生感受到数学方法的内在魅力。

(四)应用公式,解决问题

1、回归情境,解决问题。

师:现在你能解决这个问题了吗?

学生运用公式进行解答。

2、求下面的几个三角形的面积。

3、填空。

(1)平行四边形的面积是20平方米,与它等底等高的三角形的面积是( )平方米。

(2)一个三角形花坛底长10米,高是底的一半,花坛的面积是()平方米。

4、判断改错。

师:小马虎同学写了一篇数学日记,咱们来看看他写的怎么样?

课件出示:今天,我学习了新的知识:三角形的面积。我知道了三角形的面积是S=ah÷2,我认为两个三角形一定可以拼成一个平行四边形。这是一种转化的数学思想。我还知道了三角形的面积是平行四边形的面积的一半。瞧!我学习得怎么样!

学生发现错误。

5、数学史介绍。

课件出示2000年前《九章算术》里面三角形面积的研究方法。

师:如果只有一个三角形,你还能想办法研究出三角形的面积公式吗?有兴趣的同学我们课下来研究研究。

设计意图

练习设计层次清晰,既有基础练习,又有拓展练习。特别增加了数学史的内容,可以开拓学生的视野,也给学有余力的学生留下了继续探索的空间。

初二数学三角形教案(篇13)

教学目标

一、知识与技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法

通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观

通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点

1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点

正确寻找全等三角形的对应元素

难点突破

通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:

课件、三角形纸片

教学过程

一、出示学习目标

1、知道什么是全等形、全等三角形及全等三角形的对应元素。

2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。

二、直观感知,导入新课

教师演示一些全等的图形的课件,让学生直观感知图片并寻找每组图片的特点。

三、合作探究,学习新知

1.全等形

我们给这样的图形起个名称----全等形。[板书:全等形]

教师让学生们想生活中还有那些图形是全等形.

2.全等三角形及相关对应元素的定义

教师用多媒体动态演示两个能完全重合地三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

[板书课题:12.1全等三角形]

3.全等三角形的对应元素及表示

把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

以多媒体上的图形为例,全等三角形中的对应元素

(1)对应的顶点(三个)---重合的顶点

(2)对应边(三条)---重合的边

(3)对应角(三个)---重合的角

归纳:方法一---全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

用符号表示全等三角形

抽学生表示图一、图二、三的全等三角形。

4.全等三角形的性质

思考:全等三角形的对应边、对应角有什么关系?为什么?

归纳:全等三角形的对应边相等、对应角相等。

5.小组活动合作升华

学生分小组动手操作摆图形

小组合作完成位置不同的三角形,写出它们的对应边,对应角。强调其他小组学生说的时候,自己一定要注意倾听,能够分辨出对错来。

四、巩固练习

五、教师用多媒体展示习题,学生做巩固练习。

六、小结:本节课都学到了什么

七、作业:

必做题课本33页习题第1题、2题.

选做题课本第34页第6题。

初二数学三角形教案(篇14)

设计理念

教师由过去知识的传授者转变为学生学习活动的设计者和组织者,引导学生在自学文本的基础上自主探究、合作交流,与学生零距离接触。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,从而营造一个平等的、和谐的、宽松的良好氛围进行学习。同时,教师注意点拨引导,发挥学生“一帮一”合作学习的优势,培养学生良好的学习习惯。

学情分析

认知分析:学生已学过线段、角、相交线、平行线以及三角形的有关知识,初步掌握了简单说理的方法,为学习全等三角形的有关内容作了准备。

能力分析:学生已初步具备一定的归纳、猜想能力,但个别学生在理解、应用上还须借助老师、同学的帮助,通过教师的指导和同伴的帮助,也会有所收获。对于一小部分基础薄弱、自学能力稍差的学生要提供赏识性评价教学策略,给予个别关照以及适当的精神激励,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

情感分析:多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。

基于以上分析,在学法上,引导学生采用自主探索与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。

知识分析

学生已学过线段、角、相交线、平行线以及三角形的有关知识,初步掌握了简单说理的方法,为本节学习做好了准备。同时本节的学习可以丰富和加深学生对已学图形的认识,为学习其他图形知识打好基础。特别是平移、翻折、旋转前后的图形全等是运用全等形的概念得出来的,从而起到巩固新概念的作用。另一方面,掌握这一结论,对学生的某些情况下确定全等三角形的对应元素有帮助。

教学目标:

识与技能

1.知道什么是全等形、全等三角形及全等三角形的对应元素;能找出两个全等三角形的对应角、对应边;

2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;能够运用全等三角形的性质解决简单的问题。

过程与方法

1、经历全等三角形概念的建构过程,经历观察、操作、探究、归纳、总结等过程,获得全等三角形的性质和寻找对应变和对应角的方法。

2、在图形变换的实际操作过程中发展学生的空间观念,培养学生的集合直觉。

情感态度与价值观

让学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体验;在探究运用全等三角形性质的过程中感受到数学的乐趣。

教学重点

探究全等三角形的性质.

教学难点

掌握两个全等三角形的对应角、对应边的寻找规律,迅速正确的指出两个全等三角形的对应元素。

教学方法

针对学生的认知结构和心理特征,为了突出重点,突破难点,本课题的教学坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,以“引导发现,合作探究”教学法为主,辅之直观演示、讨论交流,让学生动手操作,动脑思考,动 流,动心关注。

学法指导

本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间。通过本课的教学,在教师的组织引导下,倡导学生自主学习、尝试学习、探究学习、合作交流学习。

教学资源

借助PPT软件展示引例及变式训练题组,增大课堂容量,吸引学生眼球,最大限度地激发学生的学习兴趣,优化课堂结构,提高课堂教学效率。

教学评价

在本节中,学生同教师和其他同学共同操作、相互启发、促进、交流,教师适时肯定、给予鼓励与表扬。评价方式为:

(1)课堂提问;

(2)练习反馈;

(3)在本节中,学生同教师和其他同学共同操作、相互启发、促进、交流,教师适时肯定、给予鼓励与表扬。评价方式为:

(1)课堂提问;

(2)练习反馈;

(3)展示。既有学生的自评,又有师生、生生之间的互评,力求在评价中帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。

教学过程

一、创设情境,导入新课

(1)同一张底片洗出的同大小照片重叠在一起能重合吗?

(2)如果把这些图形叠合起来,会怎样呢?

(说明:能够完全重合的两个图形称为全等形)

(3)把全等图形用线连起来:

【教师活动】

1、提出问题(1)结合学生回答及章前图引出本章内容,板书课题。

2、出示问题(2)和(3),在学生思考并回答的基础上引出并板书节课题。

3、在本次活动中,教师应重点关注:学生注意力并及时评价学生的表现。

【学生活动】

1、按照要求依次进行观察猜想、操作确认。

2、回答老师提出的问题,参与对同伴表现情况的评价。

【设计意图】运用贴近学生生活的图案激发学生探究的兴趣。问题(1),引导学生从图形的形状与大小的角度去观察图形。图形全等在生活中大量存在,创设这样的问题情境,引起学生的有意注意,激发学生主动思考和联想;引导学生进一步联系生活,激发探究的欲望。

【媒体运用】

依次出示三个问题;动态展示相关问题的解答过程及结果,节时增效

二、诱导尝试,探究新知

1、全等三角形概念教学

自学课本2-3页思考2以上的内容,(自学时间5分钟)回答下列问题

(1)什么是全等形?什么是全等三角形?请举例说明

(2)用硬纸板检验下列各图中的两个三角形是否全等?如果全等,试用符号语言表示。若不全等,请说明理由。

(3)把两个全等三角形叠放在一起,__叫对应顶点,__叫对应边,__叫对应角。

(4)如图1,若△ABC≌△DEF,则AB的对应边是 .AC的对应边是 .BC的对应边是 ;∠A的对应角是 .∠B的对应角是 .∠C的对应角是 .

(5)你能结合以上练习总结找全等三角形的对应元素的一般规律吗?

a.有公共边,则公共边为对应边

b.有公共角,则公共角为对应角

(对顶角为对应角)

c.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角

2、探索全等三角形的性质

提问:

(1)全等三角形的对应边有什么关系?全等三角形的对应角有什么关系?

(2)如图1,△ABC≌△DEF,请指出图中相等的线段和相等的角。

【教师活动】

1、出示自学提纲,提出要求,组织学生自学。

2、检查自学情况,相机板书全等形的、全等三角形的概念及对应元素找寻规律

3、结合学生回答,用课件动态展示相关问题的答案。

【学生活动】

1、按照要求自学课本内容,解答相关问题。

2、同桌合作完成问题(2),动手操作并互相讨论、探索,感知对折、旋转、平移的两个三角形仍然全等。

3、独立完成问题(3)—(6),相互交流.

【教师活动】口头提出问题,课件演示叠合过程,相机板书性质。

【学生活动】思考教师提出的问题,观察演示过程,总结归纳全等三角形的性质,参与对同伴表现情况的评价。

【设计意图】

1、以学生活动为中心,充分发挥学生学习的主动性。

2、通过学生动手实践、分析、总结出图形变换的本质,加深对全等三角形概念的理解。

3、通过层层深入的设计问题,让学生一步步拨云见日,最终能找出两个全等三角形的对应角、对应边;

【媒体运用】

出示自学提纲;动态展示相关问题的解答过程及结果。

【设计意图】学会符号语言,使学生在动手实践的过程中理解全等三角形的性质。

【媒体运用】

呈现性质的图形及符号表示形式,增强直观性

三、变式训练,巩固新知

(一)选择填空

1、△ABC≌△BAD,A和B、C和D是对应点,如果AB=5cm,BD=4cm,AD=6cm,那么BC的长是()

(A)6cm (B)5cm

(C)4cm (D)无法确定

2、 在上题中,∠CAB的对应角是( )

(A)∠DAB (B)∠DBA (C)∠DBC (D)∠CAD

整体优化县域初中数学推导型概念课有效性策略研究

(二)解答下列各题

3、如右图,已知△ABC≌△DEC,B和E,A和D是对应顶点,说出这两个三角形中相等的边和角。

整体优化县域初中数学推导型概念课有效性策略研究

4、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?

整体优化县域初中数学推导型概念课有效性策略研究

【教师活动】

1、课件呈现问题

2、根据学生回答,相机组织相互评价、矫正,并呈现解答过程。

[课件展示]

1、依次展示问题。

2、结合学生回答相机展示

巡视指导,师生互动,启发学生分析探索充分条件。

分组讨论,发表意见。

【设计意图】

本环节安排了两个梯次练习,其中题组一为概念辨析,旨在巩固全等三角形的性质及对应元素的确定方法;题组二是解答题,旨在检查学生能否从较为复杂的图形变换中检索出简单图形的能力,进一步加深学生对全等三角形对应元素的寻找能力,达到举一反三、触类旁通。

2、进一步强化了学生对性质的认识,又可以训练学生的发散思维,培养灵活运用知识的能力,增强学生的创新意识和创新能力。

【媒体运用】

呈现问题及及部分答案,验证学生解答过程,提高练习的时效性。

四、综合归纳,延展深化

通过这节课的学习,你有什么收获和体会?还有什么疑问吗?

【教师活动】

先引导学生自主小结的基础上,在学生小结的基础上进行概括小结:

【学生活动】

【设计意图】

使所学知识条理化、系统化;让学生在交流中共享,在反思中提升。

【媒体运用】再现本节知识要点。

五、推荐作业,补充升华

必做题:

习题12.1 1,2,3;

选做题:

1、已知⊿ABC≌⊿DEF,且∠A=52,∠B=31,ED=10cm,∠F=∠C,求∠F的度数与AB的长;

2、已知⊿ABC≌⊿DEF,⊿DEF的周长32cm,DE=9cm,EF=12cm,且∠E=∠B,求AC的长;

3、尽量画出两个全等的三角形所拼接的图形,并尝试寻求这两个全等三角形的对应顶点、对应边、对应角。

【教师活动】

课件展示作业题

【学生活动】按照要求自主完成作业,及时弥补

【设计意图】

为使学生的主体作用得以有效发挥,尊重学生的个体差异,为不同学生的发展创造条件,作业层推荐、分类要求。

【媒体运用】PPT课件呈现选做题。

六、板书设计:

课题

(一)、概念

1、全等形

2、全等三角形

(二)、方法

1、全等三角形表示:⊿ABC≌⊿DEF

2、找对应元素的规律:

a.公共边整体优化县域初中数学推导型概念课有效性策略研究对应边

b.公共角 对应角(对顶角为对应角)

c.大边(角)对大边(角);小边(角)对小边(角)

初二数学三角形教案(篇15)

一、教学目标:

1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。

2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

二、教材分析:

三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。

三、学校及学生状况分析:

我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的快慢程度等也会出现差异。

四、教学设计:

(一)由谈话导入新课。

1、我们已经学过长方形、正方形、平行四边形面积的计算公式。

还记得它们的面积公式吗?(一人回答)

还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?

小结:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

2、 谁知道三角形面积的计算公式?

老师调查一下:

①知道三角形面积计算公式的举手。(可能多)

②不知道三角形面积计算公式的举手。(可能不多)

③不但知道公式,而且还知道怎样推导出来的举手。(可能不多)

今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程

[板书课题:三角形面积]

(二)探究活动。

根据你们前面的学习经验,猜一猜应怎样去探究三角形的面积?[板书:转化]

下面我们将按小组来探究三角形面积的计算公式。

1、介绍学具袋中的学具。

2、出示探究目标和建议

小组合作探究活动,三角形面积的计算公式是怎样推导出来的?

建议:边动手、边想、边说。

(1) 你把三角形转化成了你以前学过的什么图形?

(2)原来的三角形和转化后的图形有什么关系?

(3) 三角形面积的计算公式是什么? 为什么?

3、同学们自选学具,想一想就可以开始了……

(教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)

了解一下学生们探究了几种方法(至少保证每人找到一种方法)后,叫停。(此时注意发现不同方法)

4、汇报:请__同学展示自己的探究成果,在他说的时候,同学们要注意听,以便予以补充。(交流过程注意引发学生间的争论)

① 直接用两个完全一样的三角形拼成平行四边形推导……

② 用一个三角形折成长方形推导……

③ 将一个三角形用割补法推导……

(若学生用任意三角形,注意指导沿“中位线”剪开)

……

5、师生共同小结:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,于是[随即板书] 三角形的面积=底×高÷2 s=a×h÷2

6、请同学再用自己喜欢的其中一种方法说说为什么?(扩大战果)

总起来说,不管同学们用一个三角形,还是用两个三角形;也不管是用拼摆的方法,还是用割补的方法,都是在想方设法将新知识转化为旧知识。可见,你们学习的时候很注重学习方法,而且“转化”的这种数学思想正在你的头脑里逐渐形成。

(三)巩固练习(机动)

我们来试着运用这个公式:

1 、基本题 先问:要想求三角形的面积必须知道什么条件?再出示数据,然后计算。

2 、基本题

3 、基本题

(由2、3题解决“等底等高三角形面积相等”)

4 、提高题 有一直角等腰三角形,它的斜边是10厘米,你会求它的面积吗?

(四)总结

说说你这节课的感受?

(重点总结心得体会或经验教训。)

五、教学反思:

新课标不仅对学生的认知发展水平提出了要求,同时也对学生学习过程、方法、情感、态度、价值观方面的发展也提出了要求。新理念注重学生的学,强调学生学习的过程与方法,这是引导学生学会学习的关键。

如果我们将数学公式的教学仅仅看成是一般数学知识的传授,那么它就是一个僵死的教条,只有发现了数学的思想方法和精神实质,才能演绎出生动结论。

这节课,我将知识目标定位为:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。能力目标定位为:在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。情感和意志目标定位为:激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

整节课是围绕着“通过学生发现三角形与已知图形的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子,比如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。

这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。

六、案例点评

本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。

教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。

通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。

221381
领取福利

微信扫码领取福利

微信扫码分享