欢迎访问范文百科-您身边的写作助手!

2022高中数学必修知识点

范文百科 分享 时间: 加入收藏 我要投稿 点赞

数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面小编为大家带来2022高中数学必修知识点,希望大家喜欢!

高中数学必修知识点

空间两条直线只有三种位置关系:平行、相交、异面。

按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp。空间向量法。

两异面直线间距离:公垂线段(有且只有一条)esp。空间向量法。

若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;

(2)没有公共点——平行或异面。

直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行。

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角;

b、直线与平面平行或在平面内,所成的角为0°角。

由此得直线和平面所成角的取值范围为[0°,90°]。

最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角。

三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

高中数学复习方法

加强对知识交汇点问题的训练

课本上每章的习题往往是为巩固本章内容而设置的,所用知识相对比较单一。复习中考生对知识交汇点的问题应适当加强训练,实际上就是训练学生的分析问题解决问题的能力。 要形成有效的知识网络。知识网络就是知识之间的基本联系,它反映知识发生的过程,知识所要回答的基本问题。构建知识网络的过程是一个把厚书(课本)读薄的过程;同时通过综合复习,还应该把薄书读厚,这个厚,应该比课本更充实,在课本的基础上加入一些更宏观的认识,更个性化的理解,更具操作性的解题经验

综合性的问题往往是可以分解为几个简单的问题来解决的,这几个简单问题有机的结合在一起。要解决这类考题,关键在于弄清题意,将之分解,找到突破口。由于课程内容的变化,使知识的交汇点出现了新动向,如从概率统计中产生应用型试题,从导数应用中与函数性质的联袂,从解析几何中产生与平面向量的联系、立体几何、三角函数、数列内容中渗透相关知识的综合考查(如三角与向量的结合、数列与不等式结合、概率与数列内容的结合)等。

注重题型的分类总结

很多学生都觉得自己在数学课上认真听讲,而且都能听懂。但是一到做题就傻眼了,似乎一道都不会,老师讲的似乎都用不上。为什么会出现这种现象呢?我认为主要原因就在于很多学生都没有自主地进行题型的分类总结。课堂上也就是记笔记,不管老师讲的是什么,只是往笔记本上一写就行了。到底什么是题型分类呢?举一个例子:在高中数学函数中,比较重要的题型有函数的定义域求解、函数的值域求解、函数的解析式求解、函数的单调性应用等等,你的头脑中是否有这些题型呢?实际上,很多学生都没有这样的意识,觉得函数就是函数,没有其他的。

如果有了题型的分类总结,在平时的解题过程中,我们就可以依据这些题型去考虑数学问题的解法。这样考虑问题的速度就很快了;而且有了题型意识,整个题目的解法体系我们也就熟悉了,从而做题速度也快了很多。

高中数学复习策略

强化“三基”,夯实基础

所谓“三基”就是指基础知识、基本技能和基本的数学思想方法,从近几年的高考数学试题可见“出活题、考基础、考能力”仍是命题的主导思想。因而在复习时应注意加强“三基”题型的训练,不要急于求成,好高骛远,抓了高深的,丢了基本的。考生要深化对“三基”的理解、掌握和运用,高考试题改革的重点是:从 “知识立意”向“能力立意”转变,考试大纲提出的数学学科能力要求是:能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。

高考复习的一个基本点是夯实解题基本功,而对这个问题的一个片面做法是,只抓解题的知识因素,其实,解题的效益取决于多种因素,其中最基本的有:解题的知识因素、能力因素、经验因素、非智力因素。学生在答卷中除了知识性错误之外,还有逻辑性错误和策略性错误和心理性错误。强化基本技能的训练要克服“眼高手低”现象,主要在速算、语言表达、解题、反思矫正等方面下功夫,尽量不丢或少丢一些不应该丢失的分数。

切实重视基础知识、基本技能和基本方法的教学。

众所周知,近年来高考数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。其主要表现在对知识的发生、发展过程揭示不够。教学中急急忙忙公式、定理推证出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让中国学习联盟量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;

照葫芦画瓢,将简单问题复杂化,从而造成失分。我们一直强调抓基础,但总是抓得不实,总是不放心。其实近几年来高考命题事实已明确告诉我们:基础知识、基本技能、基本方法始终是高考数学试题考查的重点。选择题,填空题以及解答题中的基本常规题已达整份试卷的80%左右,特别是选择题、填空题主要是考查基本知识和基本运算,但其命题的叙述或选择肢往往具有迷惑性,有的选择肢就是学生中常见的错误。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。事实上,近几年的高考数学试题对基础知识的要求更高、更严了,只有基础扎实的考生才能正确地判断。另一方面,由于试题量大,解题速度慢的考生往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。


2022高中数学必修知识点相关文章

★ 高中数学全部知识点提纲整理

★ 高二数学必修二的知识点总结

★ 高一数学必背知识点总结

★ 高二数学必修五知识点总结

★ 高一数学必修二知识点总结

★ 高二年级数学知识点总结及复习资料

★ 2022高考知识点总结

★ 高一数学必修一知识点总结归纳

★ 高二数学会考知识点大全

★ 高一数学上册知识点归纳

221381
领取福利

微信扫码领取福利

微信扫码分享