欢迎访问范文百科-您身边的写作助手!

初中数学一元二次方程教案

七七范文 分享 时间: 加入收藏 我要投稿 点赞

初中数学一元二次方程教案汇总6篇

教师需要不断探索新的教学方法,如互动式教学、案例分析、情境模拟等,让学生积极参与课堂,提高学习效果。下面是小编为大家整理的初中数学一元二次方程教案,如果大家喜欢可以分享给身边的朋友。

初中数学一元二次方程教案

初中数学一元二次方程教案 精选篇1

一、教材分析:

1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:

(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

(2)能根据具体问题的实际意义,检验结果是否合理;

(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:

重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:

1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:

本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

活动1复习回顾解决课前参与

活动2封面设计问题的探究

活动3草坪规划问题的延伸

活动4课堂回眸

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

活动1复习回顾解决课前参与

由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。

活动2封面设计问题的探究

通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

活动3草坪规划问题的延伸

放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

活动4课堂回眸

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

初中数学一元二次方程教案 精选篇2

教学目标

掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:

二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:

一、情境创设

一次函数y=x+2的图象与x轴的交点坐标

问题1.任意一次函数的图象与x轴有几个交点?

问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?

二、探索活动

活动一观察

在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索

如图1,观察二次函数y=x2-x-6的图象,回答问题:

(1)图象与x轴的交点的坐标为A(,),B(,)

(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?

活动三猜想和归纳

(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?

这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析

例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25

(2)y=3x2-4x+2

(3)y=-2x2+3x-1

例2.已知二次函数y=mx2+x-1

(1)当m为何值时,图象与x轴有两个交点

(2)当m为何值时,图象与x轴有一个交点?

(3)当m为何值时,图象与x轴无交点?

四、拓展练习

1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

(1)请写出方程ax2+bx+c=0的根

(2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。

2.列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)

五、小结

这节课我们有哪些收获?

六、作业

求证:二次函数y=x2+ax+a-2的图象与x轴一定有两个不同的交点。

初中数学一元二次方程教案 精选篇3

一、教学目标

1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。

2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。

3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。

二、教学重难点

重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。

难点:找对题目中的数量关系从而列出一元二次方程。

三、教学过程

(一)导入新课

师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?

生:老师,这是雷锋叔叔。

师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?

生:是的老师。

师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?

生:想。

师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。

(二)新课教学

师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。

(下去巡视)

(三)小结作业

师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。

初中数学一元二次方程教案 精选篇4

一、教学目标:

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.能够利用二次函数的图象求一元二次方程的近似根。

二、教学重点、难点:

教学重点:

1.体会方程与函数之间的联系。

2.能够利用二次函数的图象求一元二次方程的近似根。

教学难点:

1.探索方程与函数之间关系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

三、教学方法:

启发引导 合作交流

四:教具、学具:

课件

五、教学媒体:

计算机、实物投影。

六、教学过程:

检查预习 引出课题

预习作业:

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

师生行为:

教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:

学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:

这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

初中数学一元二次方程教案 精选篇5

教学目标

知识与能力:

1.理解一元二次方程根的判别式。

2.掌握一元二次方程的根与系数的关系

3.同学们掌握一元二次方程的实际应用.了解一元二次方程的分式方程。

过程与方法:

培养学生的逻辑思维能力以及推理论证能力。

情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。

重、难点

重点:根的判别式和根与系数的关系及一元二次方程的应用。

难点:一元二次方程的实际应用。

一、导入新课、揭示目标

1.理解一元二次方程根的判别式。

2.掌握一元二次方程的根与系数的关系

3.掌握一元二次方程的实际应用.

二、自学提纲:

一.主要让学生能理解一元二次方程根的判别式:

1.判别式在什么情况下有两个不同的实数根?

2.判别式在什么情况下有两个相同的实数根?

3.判别式在什么情况下无实数根?

二.ax2+bx+c=o(a≠0)的两个根为x1.x2那么

X1+x2=-x1x2=

三.一元二次方程的实际应用。根据不同的类型的问题.列出不同类型的方程.

三.合作探究.解决疑难

例1已知关于x的方程x2+2x=k-1没有实数根.试判别关于x的方程x2+kx=1-k的根的情况。

巩固提高:

已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根.求的周长

例题2:

.已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根.且(x1+2)(x2+2)=11.求a的值。

.巩固提高:

已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.

(1)求证:不论m为任何实数.方程总有两个不相等的实数根;

(2)若方程两根为x1.x2.且满足

求m的值。

例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台.现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台,

(1)求1月份到3月份销售额的平均增长率:

(2)求3月份时该电脑的销售价格.

练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?

2)则降价多少元?

四、小结

这节课同学有什么收获?同学互相交流?

五、布置作业:

课前课后P10-12

初中数学一元二次方程教案 精选篇6

一、教学目标

【知识与技能】

理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。

【过程与方法】

经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。

【情感、态度与价值观】

通过公式法解一元二次方程,感受解法的多样性,在学习活动中获取成功的体验。

二、教学重难点

【教学重点】

用公式法解一元二次方程。

【教学难点】

一元二次方程求根公式的推导。

三、教学过程

(一)引入新课

复习回顾:用配方法解一元二次方程。

配方,得

(四)小结作业

小结:引导学生做知识总结:本节课学习了什么叫公式法,怎样运用公式法解一元二次方程。如何判断一个方程是否有实数根?

作业:课后练习题,试着用多种方法解答。

四、板书设计

221381
领取福利

微信扫码领取福利

微信扫码分享