欢迎访问范文百科-您身边的写作助手!

初中数学说课稿模板

七七范文 分享 时间: 加入收藏 我要投稿 点赞

初中数学说课稿模板(5篇)

说课稿是教师对教材内容的梳理和解读,它能够提炼出关键知识点和重要概念,帮助学生深入理解和掌握知识。这里给大家分享一些关于初中数学说课稿模板,供大家参考学习。

初中数学说课稿模板

初中数学说课稿模板【篇1】

第一课时

(一)教学过程

【复习提问】

1.分式的定义?

2.分数的基本性质?有什么用途?

【新课】

1.类比分数的基本性质,由学生小结出分式的基本性质:

分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

(其中是不等于零的整式.)

初中数学说课稿模板【篇2】

分式及其基本性质课件

分式及其基本性质课件

学习目标:

1、了解分式和有理式的概念,明确分式与整式的区别;

2、能用分式表示现实情景中的数量关系,体会分式的模型思想,进一步发展符号感。

学习重点:

分式的概念

学习难点:

分式概念的理解

学习过程

1、学习准备

1、举例谈谈分数的意义。

2、举例说明分数线的作用。

2、合作探究

1、问题1 有块稻田,第一块是4hm2,每公顷收水稻10500kg;第二块是3hm2,每公顷收水稻9000kg,这两块稻田平均每公顷收水稻 kg。

如果第一块是mhm2,每公顷收水稻akg;第二块是nhm2,每公顷收水稻bkg,则这两块稻田平均每公顷收水稻 kg。

问题2 一件商品售价x元,利润率为a%(a>0),则这种商品的`成本是元。

观察上面代数式: , , ,它们有什么特征?和整式比较有什么不同?

2、你能写出几个和上面代数式类似的例子吗?

结合分数定义和p87分式定义,了解分式的概念。

整式和分式统称为有理式。

3、练习:下列代数式中,哪些是分式?哪些是整式?

4、思考:

(1)我们知道分数中分母不能为零。同样,分式中的分母的值也不能为零,否则分式就没有意义。要保证分式有意义,则必须分母不能为零。

(2)分式的值在什么情况下为0?

5、例题

例1(1)当x取何值时,分式 有意义?

(2)当x取什么值时,分式 的值有意义?

(3)讨论:当x取什么值时,分式 的值O?

6、练习:

(1)一箱苹果售价a元,箱子与苹果总质量为mkg,箱子质量为nkg。每千克苹果的售价为多少元?

(2)当x取什么值时,分式 有意义?

3、学习体会对照学习目标,通过预习,你觉得自己有哪些方面的收获?

有什么疑惑?

4、自我测试

1、判断题,若是错的该怎样改正。

(1) 是分式。 ( )

(2) 不是分式。( )

(3)当分式的分子值为0时,分式的值为0。( )

(4)当x≠2时,分式 有意义。( )

2、如果分式 的值为0,则x= 。

3、当x= 时,分式 的值为负数。

4、x等于什么数时,下列分式没有意义?

(1) (2)

5、甲乙两人同时同地同向而行,甲每小时走akm,乙每小时走bkm。如果从出发到终点的距离为mkm,甲的速度比乙快,则甲比乙提前几小时到达终点?

五、思维拓展

1、如果分式 有意义,那么x的取值范围是 。

2、已知分式 ,问a取何值时:

(1)分式的值为正?

(2)分式的值为负?

(1)分式的值为0?

(1)分式没有意义

初中数学说课稿模板【篇3】

第一课时

(一)教学过程

【复习提问】

1.分式的定义?

2.分数的基本性质?有什么用途?

【新课】

1.类比分数的基本性质,由学生小结出分式的基本性质:

分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:

(其中是不等于零的整式.)

2.加深对分式基本性质的理解:

例1 下列等式的右边是怎样从左边得到的?

(1);

由学生口述分析,并反问:为什么?

解:∵

∴.

(2);

学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)

解:∵

∴.

(3)

学生口答.

解:∵,

∴.

例2 填空:

(1);

(2);

(3);

(4).

把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.

例3 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.

(1);

分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?

解:.

(2).

解:.

例4 判断取何值时,等式成立?

学生分组讨论后得出结果:

∴.

(二)随堂练习

1.当为何值时,与的值相等

A.B.C.D.

2.若分式有意义,则,满足条件为( )

A.B.C.D.以上答案都不对

3.下列各式不正确的`是( )

A.B.

C.D.

4.若把分式的和都扩大两倍,则分式的值

A.扩大两倍 B.不变

C.缩小两倍 D.缩小四倍

(三)总结、扩展

初中数学说课稿模板【篇4】

教学目标:

1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)

2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)

3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)

教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题

教 具:多媒体、棉线、三角板

教学过程:

情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。

如何来描述我们所看到的现象?

教学过程:

1、 一段拉直的棉线可近似地看作线段

师生画线段

演示投影片1:

①将线段向一个方向无限延长,就形成了:

学生画射线

②将线段向两个方向无限延长就形成了:

学生画直线

2、 讨论小组交流:

① 生活中,还有哪些物体可以近似地看作线段、射线、直线?

(强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)

②线段、射线、直线,有哪些不同之处, 有哪些相同之处?

(鼓励学生用自己的语言描述它们各自的特点)

3、 问题1:图中有几条线段?哪几条?

“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。

点的记法: 用一个大写英文字母

线段的记法:①用两个端点的字母来表示

②用一个小写英文字母表示

自己想办法表示射线,让学生充分讨论,并比较如何表示合理

射线的记法:

用端点及射线上一点来表示,注意端点的字母写在前面

直线的记法:

① 用直线上两个点来表示

② 用一个小写字母来表示

强调大写字母与小写字母来表示它们时的区别

(我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)

练习1:读句画图(如图示)

(1) 连BC、AD

(2) 画射线AD

(3) 画直线AB、CD相交于E

(4) 延长线段BC,反向延长线段DA相交与F

(5) 连结AC、BD相交于O

练习2:右图中,有哪几条线段、射线、直线

4、 问题2 请过一点A画直线,可以画几条?过两点A、B呢?

学生通过画图,得出结论:过一点可以画无数条直线

经过两点有且只有一条直线

问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?

为什么?(学生通过操作,回答)

小组讨论交流:

你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?

适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。

5、 小结:

① 学生回忆今天这节课学过的内容

进一步清晰线段、射线、直线的概念

② 强调线段、射线、直线表示方法的掌握

6、 作业:①阅读“读一读” P121

②习题4的1、2、3。4作为思考题

初中数学说课稿模板【篇5】

一、教学目标:

1.知识目标:

①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:

①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:

①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法

启发引导式、讨论式和谈话法

四、教学过程

(一)复习提问

问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

(二)新授

1.引入

结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义

①几何意义

一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|

举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

强调:表示0的点与原点的距离是0,所以|0|=0

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义

把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

用字母a表示数,则绝对值的代数意义可以表示为:

指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

3.例题精讲

例1.求8,-8,-的绝对值。

按教材方法讲解。

例2.计算:|2.5|+|-3|-|-3|

解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

例3.已知一个数的绝对值等于2,求这个数。

解:∵|2|=2,|-2|=2

∴这个数是2或-2

五、巩固练习

练习一:教材P641、2,P66习题2.4A组1、2

练习二:

1.绝对值小于4的整数是:

2.绝对值最小的数是:

3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

六、归纳小结

本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

七、布置作业

教材P66习题2.4A组3、4、5

221381
领取福利

微信扫码领取福利

微信扫码分享