初中数学万能说课稿5篇
说课稿应包括教学背景、教学目标、教学内容、教学步骤、教学手段等方面的信息。说课稿的撰写需要准确描述每个环节的具体操作步骤,以便其他教师能够理解并复制相应的教学过程。这里给大家分享一些关于初中数学万能说课稿,供大家参考学习。
初中数学万能说课稿【篇1】
各位评委,各位老师,大家好。今天我说课的课题是人教版义务教育课程标准实验教科书《数学》七年级下册10.2立方根第一课时。对于新教材,我将以新课标的理念来指导我的教学,对于本节课我将以教什么,怎么教,为什么这样教为思路。从教材分析,教法学法分析,教学过程分析,评价分析四个方面加以说明。
一、教材分析
(一)教材的地位和作用
本章可以看成是以后学习代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,因此在中学数学教学中占有很重要的地位。通过本章的学习,学生对数的认识就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。在此之前,学生已经学习了数的平方根,这为过渡到本节的学习起着铺垫作用。通过本节课的学习,学生可以更深入的了解无理数,为后面学习实数奠定基础。
(二)学情分析
学生已经比较熟练的掌握了平方根的概念和性质,能用根号表示一个数的平方根,学生的学习态度比较端正,个性活泼,思维比较活跃,对一些数学问题已具有自主探究的能力,但班上的这些学生结构参差不齐,个体差异比较明显,部分学生的思维已由形象思维向抽象思维转化,但形象思维仍占主导地位。
(三)根据教材要求确定本节课的教学目标为:
①了解立方根和开立方的概念;
②掌握立方根的性质;
③会用根号表示一个数的立方根;
④会求一个数的立方根。
⑤通过用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同。
⑥通过学习立方根,培养学生理解概念并用定义 解题的能力。
⑦发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理。
⑧通过探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情。
(四)教学重难点
根据学生的认识发展水平和教材特点,结合本班学生的实际情况在教学中我认为教学的重点是立方根的概念及性质;本节课的教学难点是:求一个数的立方根。
二、教法学法分析
(一)教法分析
根据学生的年龄特征和心理发展水平及教学内容的特点,在教学的'方法上,我以探究式体验教学为主,为学生创造一个良好的学习情景,通过学生的自主探究了解知识,加深理解。同时考虑到学生的个体差异,在各个环节进行帮辅式教学。
(二)学法分析
从学生已有的认知水平、认识能力出发,用类比及引导探索法由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流得出立方根的定义,将定义的应用融入到探究活动中。使学生由学会,变得会学、乐学。通过启发、疏导、点拔、评价的方法让学生很轻松的接受新知识。
(三)教学手段
在教学中采用多媒体教学,直观展示立方根的表示方法,激发学生的学习欲 望,增大教学容量,提高课堂教学效果。
三、教学过程分析
在教学过程中根据新课标的要求,结合我班实际情况,制定了以下教学流程:创设情境复旧引新;启发诱导,探索新知;引导探究,延伸新知;归纳小结,深化新知;布置作业,巩固新知。
1、首先我们进入第一个环节,创设情景,复习旧知识引导新知识。新课标要求学生学习数学知识应该在生动的情景中学习,享受学习数学的美,情景创设实际上是最重要的教学内容之一,所以我在教学中设计了两个问题,问题一的设计我改变了传统的固定问题方式,给学生以思考的空间,充分体现了学生的`主体意识,使学生把学习知识的事情当作自己问题的发现,从而找到学习数学的成功感,消除学习新知识的畏惧心态。
让学生做一个容积为125立方厘米方体,此题对学生有一个计算过程,学生容易得出答案,根据计算结果做出棱长为5厘米的正方体,老师对学生的制作给予肯定,给予鼓励,从熟悉的立体图形引入立方根,提高学生学习的激情,激起他们的求知欲;然后提出下一个问题:做一个容积为50立方分米,高是底面直径的4倍的圆柱体容器,那它的底面直径是多少?怎么求?学生容易列出式子,出现了15.92,学生在制作上出现了难题,学生百思不得其解。老师根据学生的焦急心情给予学生一个台阶,只要我们学习了这节课的内容你们就会解决了。在此让学生进一步认识这个等式中的值,就是已知幂是15.92,指数是3时求底数的值,让学生明白它是立方运算的一种逆运算。从身边熟悉的事物引入立方根的概念,说明学习立方根的意义,立方根可以用来解决我们身边的很多实际问题。使学生产生了强烈的求知欲 望,强劲的学习动力。接着出示一个小练习,为概念的引入作准备并渗透从特殊到一般的规律。
2、然后启发诱导,探索新知是本节课的重点也是难点,让学生根据刚才列式以及平方根的定义试着给数的立方根下定义。在给立方根下定义时,利用立方根与平方根的类比的方法,既有利于加深学生对立方根概念的理解,并让学生了解开立方与立方互为逆运算,弄清两者的区别与联系,让学生把知识学得更好,又可以提高教学效益,节损教学时间。再出示练一练,让学生用类比的方法求数的立方根,认识求一个数的立方根的运算与立方的联系与区别,由易到难,由浅入深,层层递进,注意训练学生用“∵”、“∴”的推理格式书写,培养学生用概念进行思维的训练,着眼于弄清立方根的概念和符号表示,在练习的过程中要求学生采用语言叙述和符号表示互相补充的方法书写过程。
强调指出根指数3,不能省略;接着根据立方根的意义填空,目的在于让学生巩固熟悉立方根的概念,让学生在练习中发挥小组的集体力量讨论完成表格,从而得出立方根的性质。(在学生得出立方根的性质有难度时,教师可以从正数的立方根,0的立方根,负数的立方根三个方面给予提示);通过提示中偏下的学生也能完成表格,结合平方根让学生对立方根有一个全新的认识,再通过做一做进一步提高学生的计算能力,此题目相对复杂点,题(2)中同时出现立方根和平方根,突出了立方根和平方根的对比,以利于弄清两者的区别和联系)。然后用一个挑战自我的题目深化所学内容,发展学生的抽象思维能力和归纳能力,马上用体验一刻通过练习,使学生熟悉并掌握刚才的两条公式,提高解决问题的能力。
3、下一步,引导探究,延伸知识,让学生通过练习、观察、探究,总结出互为相反数的两个数a与—a的立方根的关系,培养学生的自我归纳能力和总结能力,通过他们的合作学习,体会到获得知识的成功感,增强学习数学的愿望,信心。
4、现在进入到小结归纳,深化新知,我的理解是小结归纳不应该是对知识的简单罗列,应该充分发挥学生的主体作用,从学习的知识、方法体验上,三个方面进行归纳,因此我设计了这么三个问题:通过本节课的学习你获得了哪些知识?通过本节课的学习你的体验是什么?通过本节课的学习你掌握了那些学习数学的方法?让学生在明确掌握了重难点的同时消化本节课所学的内容,总结出平方根与立方根的异同。
5、接下来就是布置作业,巩固新知,为了巩固新知识,作业设计分为必作题和选作题,必作题是对本节课所学内容的反馈,选作题是本节课所学知识的延伸、拓展,注重知识的连贯性,设计题目学以制用,巩固提高。
6、板书设计,用来再现教学过程,突出教学重点,加深学生对本节课知识的理解和掌握,对本节课的知识形成整体框架。
初中数学万能说课稿【篇2】
一、教材分析:
本节课主要是在学生学习了有理数概念基础上,从标有刻度温度计表示温度高低这一事例出发,引出数轴画法和用数轴上点表示数方法,初步向学生渗透数形结合数学思想,以使学生借助直观图形来理解有理数有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识重要工具,还是以后学好不等式解法、函数图象及其性质等内容必要基础知识。
二、教学目标:
根据新课标要求及七年级学生认知水平我特制定本节课教学目标如下:
1.使学生理解数轴三要素,会画数轴。
2.能将已知有理数在数轴上表示出来,能说出数轴上已知点所表示有理数,理解所有有理数都可以用数轴上点表示
3.向学生渗透数形结合数学思想,让学生知道数学于实践,培养学生对数学学习兴趣。
三、教学重难点确定:
正确理解数轴概念和有理数在数轴上表示方法是本节课教学重点,建立有理数与数轴上点对应关系(数与形结合)是本节课教学难点。
四、学情分析:
⑴知识掌握上,七年级学生刚刚学习有理数中正负数,对正负数概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统去讲述。
⑵学生学习本节课知识障碍。学生对数轴概念和数轴三要素,学生不易理解,容易造成画图中掉三落四现象,所以教学中教师应予以简单明白、深入浅出分析。
⑶由于七年级学生理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动形象,引发学生兴趣,使他们注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习主动性。
⑷心理上,学生对数学课兴趣,老师应抓住这有利因素,引导学生认识到数学课科学性,学好数学有利于其他学科学习以及学科知识渗透性。
五、教学策略:
由于七年级学生理解能力和思维特征,他们往往需要依赖直观具体形象图形年龄特点,以及七年级学生刚刚学习有理数中正负数,对正负数概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”研讨式学习方法。教学中积极利用板书和练习中图形,向学生提供更多活动机会和空间,使学生在动脑、动手、动口过程中获得充足体验和发展,从而培养学生数形结合思想。
为充分发挥学生主体性和教师主导辅助作用,教学过程中设计了七个教学环节:
(一)、温故知新,激发情趣
(二)、得出定义,揭示内涵
(三)、手脑并用,深入理解
(四)、启发诱导,初步运用
(五)、反馈矫正,注重参与
(六)、归纳小结,强化思想
(七)、布置作业,引导预习
六、教学程序设计:
(一)、温故知新,激发情趣:
首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉带刻度度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:
(1)零上5°C用5表示。
(2)零下15°C用-15表示。
(3)0°C用0表示。
然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上点表示正数、负数和0呢?答案是肯定,从而引出课题:数轴。结合实例使学生以轻松愉快心情进入了本节课学习,也使学生体会到数学于实践,同时对新知识学习有了期待,为顺利完成教学任务作了思想上准备。
(二)、得出定义,揭示内涵:
教师设问:到底什么是数轴?如何画数轴呢?
(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美感觉。)
(2)标正方向(这里说明我们在水平位置数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线一部分,因此标上箭头指明正方向,并表示无限延伸。)
(3)选取单位长度,标数(这里说明任选适当长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度长短,可根据实际情况而定,但同一单位长度所表示量要相同。)
由于画数轴是本节课教学重点,教师板书这三个步骤,给学生以示范。
画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”(通过教师亲切语言启发学生,以培养师生间默契)
通过讨论由师生共同得到数轴定义:规定了原点、正方向和单位长度直线叫做数轴。
至此,我们将一个具体事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论认识过程。
(三)、手脑并用,深入理解:
1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?
A、B、C三个图形从数轴三要素出发,D和F是学生可能出现错误,给学生足够观察、思考时间然后展开充分讨论,教师参与到学生讨论之中去接触学生,认识学生,关注学生。
2、为进一步强化概念,在对数轴有了正确认识基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)
学生在画数轴时教师巡视并予以个别指导,关注学生个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生发展;并强调:原点、正方向和单位长度是数轴三要素,画数轴时这三要素缺一不可。
我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念理解;一个是通过动手操作加深对概念理解。
(四)、启发诱导,初步运用:
有了数轴以后,所有有理数都可以表示在数轴上,那么反过来,数轴上点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数学习埋下伏笔,这里不再展开。
安排课本23页例1,利用黑板上例题图形让学生来操作,教师提出要求:
1、要把点标在线上
2、要把数标在点上方
通过学生实际操作,可以加深对数轴理解,进一步掌握用数轴上点表示数方法,同时激发学生学习兴趣,调动学生积极性,从而使学生真正成为教学主体。
当然,此题还可以再说出几个有理数让学生去标点,好让更多学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上点表示,从而加深对数形结合思想理解。
(五)、反馈矫正,注重参与:
为巩固本节教学重点让学生独立完成:
1、课本23页练习1、2
2、课本23页3题(给全体学生以示范性让一个同学板书)为向学生进一步渗透数形结合思想让学生讨论:
3、数轴上点P与表示有理数3点A距离是2,
(1)试确定点P表示有理数;
(2)将A向右移动2个单位到B点,点B表示有理数是多少?
(3)再由B点向左移动9个单位到C点,则C点表示有理数是多少?
先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识基础上达到灵活运用,形成一定能力。
(六)、归纳小结,强化思想:
根据学生特点,师生共同小结:
1、为了巩固本节课教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?
2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同有理数?
让学生牢固掌握一个有理数只对应数轴上一个点,并能说出数轴上已知点所表示有理数。
(七)、布置作业,引导预习:
为面向全体学生,安排如下:
1、全体学生必做课本25页1、2、3
2、最后布置一个思考题:
与温度计类似,数轴上两个不同点所表示两个有理数大小关系如何?
(来引导学生养成预习学习习惯)
七、板书设计:(略)
总之,在教学过程中,我始终注意发挥学生主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样教学实践取得了良好教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎好教师。
以上是我对本节课设想,不足之处请老师们多多批评、指正,谢谢!
初中数学万能说课稿【篇3】
一、素质教育目标
(一)知识教学点
1.掌握的三要素,能正确画出.
2.能将已知数在上表示出来,能说出上已知点所表示的数.
(二)能力训练点
1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.
2.对学生渗透数形结合的思想方法.
(三)德育渗透点
使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.
(四)美育渗透点
通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.
二、学法引导
1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.
2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.
三、重点、难点、疑点及解决办法
1.重点:正确掌握画法和用上的点表示有理数.
2.难点:有理数和上的点的对应关系。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片.
六、师生互动活动设计
师生同步画,学生概括三要素,师出示投影,生动手动脑练习
七、教学步骤
(一)创设情境,引入新课
师:大家知识温度计的用途是什么?
生:温度计可以测量温度
(出示投影1)
三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.
师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
我们能否用类似温度计的图形表示有理数呢?
这种表示数的图形就是今天我们要学的内容—(板书课题).
【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的.意识.
(二)探索新知,讲授新课
1.的画法
与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:
第一步:画直线定原点原点表示0(相当于温度计上的0℃).
第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).
第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).
【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.
让学生观察画好的直线,思考以下问题:
(出示投影1)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。
学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充。
初中数学万能说课稿【篇4】
一、教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯。
二、教学重点和难点
一元一次方程解简单的应用题的方法和步骤。
三、课堂教学过程设计
(一)从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题。
例1 某数的3倍减2等于某数与4的和,求某数。
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3。
答:某数为3。
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4。
解之,得x=3。
答:某数为3。
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
(二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2 某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42 500,
所以x=50 000。
答:原来有50 000千克面粉。
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:
(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿。
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。
例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)
解:设第一小组有x个学生,依题意,得
3x+9=5x-(5-4),
解这个方程:2x=10,
所以x=5。
其苹果数为3× 5+9=24。
答:第一小组有5名同学,共摘苹果24个。
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。
(设第一小组共摘了x个苹果,则依题意,得)
(三)课堂练习
1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?
2.我国城乡居民1988年末的储蓄存款达到3 802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。
(四)师生共同小结
首先,让学生回答如下问题:
1.本节课学习了哪些内容?
2.列一元一次方程解应用题的方法和步骤是什么?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;
(2)以上步骤同学应在理解的基础上记忆。
(五)作业
1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?
4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?
5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。
初中数学万能说课稿【篇5】
一、教学目的:
1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
二、重点、难点
1.教学重点:菱形的两个判定方法.
2.教学难点:判定方法的证明方法及运用.
三、例题的意图分析
本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.
四、课堂引入
1.复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1 菱形的四条边都相等;
性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1 对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2 四边都相等的四边形是菱形.
五、例习题分析
例1 (教材P109的例3)略
例2(补充)已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.
求证:四边形AFCE是菱形.
证明:∵ 四边形ABCD是平行四边形,
∴ AE∥FC.
∴ ∠1=∠2.
又 ∠AOE=∠COF,AO=CO,
∴ △AOE≌△COF.
∴ EO=FO.
∴ 四边形AFCE是平行四边形.
又 EF⊥AC,
∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形).
※例3(选讲) 已知:如图,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.
求证:四边形CEHF为菱形.
略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.
所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.
六、随堂练习
1.填空:
(1)对角线互相平分的四边形是 ;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线 的四边形是菱形.
2.画一个菱形,使它的两条对角线长分别为6cm、8cm.
3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
七、课后练习
1.下列条件中,能判定四边形是菱形的是 ( ).
(A)两条对角线相等 (B)两条对角线互相垂直
(C)两条对角线相等且互相垂直 (D)两条对角线互相垂直平分
2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.
3.做一做:
设计一个由菱形组成的花边图案.花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形。