高中数学优质课说课稿获奖(通用5篇)
说课稿包含教学目标、教学内容、教学方法、教学资源、教学评价等要素,通过准确、清晰地传达这些信息,帮助听课人员理解教学意图。这里给大家分享一些关于高中数学优质课说课稿获奖,供大家参考学习。
高中数学优质课说课稿获奖(篇1)
一、教材简析
1、地位和价值
一元二次不等式解法是高中数学新教材第一册(上)第一章第5节的内容。在此之前,学生在初中已学习了一元一次不等式,一元一次不等式组,一元二次方程,二次函数,绝对值不等式(高中),这为过渡到本节的学习起着铺垫作用。一元二次不等式解法是解不等式的基础和核心,它在高中代数中起着广泛应用的工具作用,蕴藏着“数与形结合”的重要思想方法,它已成为代数、三角、解析几何交汇综合的重要部分,是高考综合题的热点。
2、教材结构简介
教材首先以一个一次函数图象的应用解一元一次不等式,引出图象法,然后给出一个二次函数,通过具体画图象,提出问题。再一般地给出了二次函数图象解二次不等式的结论。课本精选了四个解不等式的例题,并配有相应的练习和习题。它的后一小节为解可转化为一元二次不等式的分式不等式。
二、教育教学观
1、学生为主体,重学生参与学习活动。
2、重过程。按照认知规律及学生认知特点,由浅入深,由表及里,设计一系列教学活动过程。体现由“实践……观察……归纳……猜想……结论……验证应用”的循环往复的认知过程。
3、重能力与态度的培养,在活动中培养学生自主、交流合作、探究、发现的能力。重科学严谨的个性品质。重参与学习的兴趣和体验。
4、重指导点拨。在学生自主探究、实践的基础上,相机启发,恰当点拨,促进学生知识由感性向理性提升,由具体到概括抽象,形成师生间的有效互动。
三、教学目标
基于上述认识,及不等式的基本知识,同时学生在初中已学过二次函数,考虑到学生已有的认知结构心理特征,制订如下教学目标:
1、知识目标:一元二次方程,一元二次不等式及二次函数间的联系,及利用二次函数的图象求解一元二次不等式。
2、能力目标:数形结合的思想(应用二次函数图象解不等式)
3、情感态度目标:通过问题解决,培养学生自主参与学习,以及严谨求实的态度。
四、教与学重点、难点
1、重点:用图象解一元二次不等式。
2、难点:围绕二次函数图象、性质这一主线,解决三个“二次”的联系和应用。
五、教法与学法
1、学情分析及学法:函数与图象应用是初中生数学的薄弱之处,同时刚进入高中的学生,对高中学习还很不适应,需要加强主动学习的指导。基于此,在学生初中知识经验的基础上,以旧探新;以一系列问题,促进主体的学习活动(如画图象、读图等),建构知识;以问题情景激励学生参与,在恰当时机进行点拨启发,练、导结合,讲练结合;通过学生自己做数学,教师启发指导,以及学生领悟,实现学生对知识的再创造和主动建构;具体通过教材中的问题及设计的问题情景,给予学生活动的空间,通过这些问题(“脚手架”)的解决,使学生逐步攀升,达到知识与能力的目标。
2、教法:数学教学是数学教与学活动过程的教学,学生是在探究与发现中建构知识,发展能力的,因而确定以“问题解决”为教法。实现学生在教师指导下的发现探索。同时所学内容适宜用“计算机高中数学问题处理系统”辅助教学。
六、教学手段及工具:
多媒体教学手段,高中数学问题处理系统。
七、教学设计及教学过程
1、复习设问,引入新课
高中数学新教材第一册(上)《一元二次不等式解法》(第一课时)说课稿.rar
高中数学优质课说课稿获奖(篇2)
一、教材分析
1.地位和作用。本课是五年制高等师范教材南京大学出版社《数学》教材第一册第二章第二节的教学内容,从知识结构看:它是一元一次不等式的延续和拓展,又是以后研究函数的定义域、值域等问题的重要工具,起到承前启后的作用;
从思想层次上看:它涉及到数形结合、分类转化等数学思想方法,在整个教材中有很强的基础性。
2.教材内容剖析。本节课的主要内容是通过二次函数的图像探究一元二次不等式的解法。教材中首先复习引入了“三个一次”的关系,然后依旧带新,揭示“三个二次”的关系,其次通过变式例题讨论了△=0和△<0的两种情况,最后推广一般情况的讨论,教材的内容编排由具体到抽象、由特殊到一般,符合人的认知规律。
3.重难点剖析。重点:一元二次不等式的解法。难点:一元二次方程、一元二次不等式、二次函数的关系。难点突破:
(1)教师引导,学生自主探究,分组讨论。
(2)借助多媒体直观展示,数形结合。
(3)采用由简单到复杂,由特殊到一般的教学策略。
二、目的分析
知识目标:掌握一元二次不等式的解法,理解“三个二次”之间的关系
能力目标:培养学生“从形到数”的转化能力,由具体到抽象再到具体,从特殊到一般的归纳概括能力。
情感目标:在自主探究与讨论交流过程中,培养学生的合作意识。
三、教法分析
教法:“问题串”解决教学法
以“一串问题”为出发点,指导学生“动脑、动手、动眼、动口”,参与知识的形成过程,注重学生的内在发展。
学法:合作学习:
(1)以问题为依托,分组探究,合作交流学习。
(2)以现有认知结构为依托,指导学生用类比方法建构新知,用化归思想解决问题。
四、过程分析
本节课的教学,设计了四个教学环节:
创设情景、提出问题
问题1.用一根长为10m的绳子能围成一个面积大于6m2的矩形吗?“数学来源于生活,应用于生活”,首先,以生活中的一个实际问题为背景切入,通过建立简单的数学模型,抽象出一个一元二次不等式,引入课题。
设计意图:激发学生学习兴趣,体现数学的科学价值和使用价值。
自主探究,发现规律
问题2.解下列方程和不等式。①2x-4=0②2x-4>0③2x-4<0
归纳、类比法是我们发现问题、寻求规律,揭示问题本质最常用的方法之一。寻求一元二次不等式的解法,首先从一元一次不等式的解法着手。展示问题2。学生:用等式和不等式的基本性质解题。教师:还有其他的解决方法吗?展示问题3。
问题3.画出一次函数y=2x-4的图像,观察图像,纵坐标y=0、y>0、y<0所对应的横坐标x取哪些数呢?
学生:发现可以借用图像解题。此问题揭示了“三个一次”的关系。
设计意图:为后面学习二次不等式的解法提供铺垫。
问题4用图像法能不能解决一元二次不等式的解呢?已知二次函数y=x2-2x-8.
(1)求出此函数与x轴的交点坐标。
(2)画出这个二次函数的草图。
(3)在抛物线上找到纵坐标y>0的点。
(4)纵坐标y>0(即:x2-2x-8>0)的点所对应的横坐标x取哪些数呢?
(5)二次函数、二次方程、二次不等式的关系是什幺?
教师:展示问题4。此环节,要注意下面几个问题:
(1)启发引导学生运用归纳、类比的方法,组织学生分组讨论,自主探究。(2)及时解决学生的疑点,实现师生合作。(3)先让学生自己思考,最后教师和学生一起归纳步骤。(求根—画图—找解),抓住问题本质,画图可省去y轴。教师抓住时机,展示例题1,巩固方法(△>0的情况),规范步骤,板书做题步骤,起到示范的作用。设计意图:运用“解决问题”的教学方法,使每位学生参与知识的形成过程,体现了教师主导学生主体的地位。
变式提问,启发诱导
方程:ax2+bx+c=0的解情况函数:y=ax2+bx+c的图象
不等式的解集
ax2+bx+c>0ax2+bx+c<0
⊿>0
⊿=0
⊿<0
教师:展示例题2(1).-x2+x+6≥0(2).x2-4x+4<0(3).x2-x+3>0。学生:尝试通过画图求解。此环节要注意:引导学生把不熟悉的问题转化为熟悉的问题解决;对于△=0,△<0的情况,启发学生用数形结合的思想方法关键在于画好图像,贵在“结合”。设计意图:通过探索、尝试的过程,培养了学生大胆猜想,勇于探索的精神。
自我尝试,反馈小结。
教师:展示练习题,把学生分成两个小组,要求当堂完成,看哪个组做的好做的快。教师对出现的问题及时反馈。同时,进一步启发引导学生将特殊、具体问题的结论推广到一般化。展示表格,学生:填写内容。
学生理解了“三个二次”的关系,得到一般结论应该是水到渠成。最后,教师做本节课的小结,布置作业。设计意图:激发了学生的求知欲,培养了学生的主动参与意识。
五、评价分析
1.重视学生学习的结果评价,更重视过程评价。2.本节课贯彻了新课程的理念,教学形式开放,体现了“教师主导,学生主体”的教学关系。以上是我对本节课的粗浅认识,如有不妥之处,恳求各位专家、各位同仁批评指正。
高中数学优质课说课稿获奖(篇3)
今天我说课的题目是《条件语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
在此之前,学生已学习了算法的概念、程序框图与算法的基本逻辑结构、输入语句、输出语句和赋值语句,这为过渡到本节的学习起着铺垫作用。这一节课主要的内容为条件语句表示方法、结构以及用法。条件语句与程序图中的条件结构相对应,它是五种基本算法语句中的一种。通过本节课的学习,学生将更加了解算法语句,并能用更全面的眼光看待前面学过的语句,并为以后的学习作好必要的准备。本节课对学生算法语言能力、有条理的思考与清晰地表达的能力,逻辑思维能力的综合提升具有重要作用。
2.教学的重点和难点
重点:条件语句的表示方法、结构和用法;用条件语句表示算法。
难点:理解条件语句的表示方法、结构和用法。
二、教学目标分析
1.知识与技能目标:
⑴正确理解条件语句的概念,并掌握其结构。
⑵会应用条件语句编写程序。
2.过程与方法目标:
⑴通过实例,发展对解决具体问题的过程与步骤进行分析的能力。
⑵通过模仿,操作、探索、经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力。
⑶在解决具体问题的过程中学习条件语句,感受算法的重要意义。
3.情感,态度和价值观目标
⑴能通过具体实例,感受和体会算法思想在解决具体问题中的意义,进一步体会算法思想的重要性,体验算法的有效性,增进对数学的了解,形成良好的数学学习情感,增强学习数学的乐趣。
⑵通过感受和认识现代信息技术在解决数学问题中的重要作用和威力,形成自觉地将数学理论和现代信息技术结合的思想。
⑶在编写程序解决问题的过程中,逐步养成扎实严谨的科学态度。
三、教学方法与手段分析
1.教学方法:根据本节内容逻辑性强,学生不易理解的特点,本节教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这种方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。
2.教学手段:运用计算机、图形计算器辅助教学
四、教学过程分析
1.创设情境(约4分钟)
首先,我要求学生们编写程序,输入一元二次方程
的系数,输出它的实数根。这样可以把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,因为要解决这一问题,根据我们之前所学的三种算法语句是无法解决的,这样就引出今天我们所要学习的内容。
2.探究新知(约8分钟)
为了引入概念,我首先给出了一个基本的应用条件语句能够解决的例题:
例1 编写一个程序,求实数x的绝对值。
整个过程由师生共同分析完成。老师要引导学生分析、研究例题中的两个程序,既要让学生们看到已知的三种语句,更要注意到未知的语句,即条件语句。总结上述例题的程序可得出条件语句的两种一般格式,接下来由师生共同对这两种格式进行研究.
3.知识应用(约15分钟)
此环节有两个例题
例2 编写程序,写出输入两个数a和b,将较大的数打印出来
例3 编写程序,使任意输入的3个整数按从大到小的顺序输出.
先把解决问题的思路用程序框图表示出来,然后再根据程序框图给出的算法步骤,逐步把算法用对应的程序语句表达出来。(程序框图先由学生讨论,再统一,然后利用图形计算器演示,学生会惊喜的发现:自己也是个编程高手了!这样可以激发学生们的学习兴趣)
4.练习巩固(约4分钟)
课本第30页第3题
练习可巩固学生对知识的理解,也可在练习中发现问题,使问题得到及时的解决。
5.课堂小结(约5分钟)
条件语句的步骤、结构及功能.
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用
6.布置作业
课本练习第3、4题
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。
7.板书设计
1.2.2条件语句
1、条件语句的一般格式
(1)IF-THEN-ELSE语句
格式: 框图:
(2)IF-THEN语句
格式: 框图:
2、小结
(1)
(2)
(3)
2、例1 引例
例2 例4
例3
高中数学优质课说课稿获奖(篇4)
课题《数列的概念与简单表示方法(一)》选自普通高中课程标准试验教科书人教版A版数学必修5第二章第一节的第一课时。我将从教材分析、学情分析、教学目标分析、教法分析、教学过程这五个方面来汇报我对这节课的教学设想。
一、教材分析
1、教材的地位和作用
数列是高中数学的重要内容之一,它的地位作用可以从三个方面来看:
(1)数列有着广泛的实际应用。如堆放的物品的总数计算要用到数列的前n项和,又如分期储蓄、付款公式的有关计算也要用到数列的一些知识。
(2)数列起着承前启后的作用。一方面,初中数学的许多内容在解决数列的某些问题中得到了充分运用,数列是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面,学习数列又为进一步学习数列的极限,等差数列、等比数列的前n项和以及通项公式打好了铺垫。因此就有必要讲好、学好数列。
(3)数列是培养学生数学能力的良好题材。是进行计算,推理等基本训练,综合训练的重要教材。学习数列,要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有助于学生数学能力的提高。
二、学情分析
从学生知识层面看:学生对数列已有初步的认识,对方程、函数、数学公式的运用已有一定的基础,对方程、函数思想的体会也逐渐深刻。
从学生素质层面看:从高一新生入学开始,我就很注意学生自主探究习惯的养成。现阶段我的学生思维活跃,课堂参与意识较强,而且已经具有一定的分析、推理能力。
三、教学目标分析
根据上面的教材分析以及学情分析,确定了本节课的教学目标:
(1)知识目标:认识数列的特点,掌握数列的概念及表示方法,并明白数列与集合的不同点。了解数列通项公式的意义及数列分类。能由数列的通项公式求出数列的各项,反之,又能由数列的前几项写出数列的一个通项公式。
(2)能力目标:通过对数列概念以及通项公式的探究、推导、应用等过程,锻炼了学生的观察、归纳、类比等分析问题的能力。同时更深层次的理解了数学知识之间的相互渗透性思想。
(3)情感目标:在教学中使学生体会教学知识与现实世界的联系,并且利用各种有趣的,贴近学生生活的素材激发学生的学习兴趣,培养热爱生活的情感。
四、教学重点与难点
根据教学目标以及学生的理解能力与认知水平,我确定了如下的教学重难点。
重点:理解数列的概念,能由函数的观点去认识数列,以及对通项公式的理解。
难点:根据数列的前几项的特点,通过多角度、多层次的观察分析归纳出数列的一个通项公式。
五、教法分析
根据本节课的内容和学生的实际情况,结合波利亚的先猜后证理论,本节课主要以讲解法为主,引导发现为辅,由老师带领同学们发现问题,分析问题,并解决问题.考虑到学生的认知过程,本节课会采用由易到难的教学进程以及实例给出与练习设置,让学生们充分体会到事物的发展规律。同时为了增大课堂容量,提高教学效率,更吸引同学们的眼光,提高学习热情,本节课还会采用常规手段与现代手段相结合的办法,充分利用多媒体,将引例、例题具体呈现.
高中数学优质课说课稿获奖(篇5)
各位评委、各位老师:
大家好!
我叫李长杉,来自甘肃省嘉峪关市第一中学。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课"教什么?"、"怎样教?"以及"为什么这样教?"三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。
一、教材内容分析:
1.本节课内容在整个教材中的地位和作用。
概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。
2.教学目标定位。
根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。
3.教学重点、难点确定。
本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。
二、教法学法分析:
数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了①创设情景——引入新课,②交流探究——发现规律,③启发引导——形成结论,④练习小结——深化巩固,⑤思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。
三、教学过程分析:
1.创设情景——引入新课。我们常说"兴趣是最好的老师",长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以20_年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。
2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。
3.启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程 ax2+bx+c=0 的根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为"三步曲"法)。
4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1-4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。
5.延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。
四、课堂意外预案:
新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到"意外"的问题,我在平时的教学中重视对"课堂意外预案"的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个"意外预案".
1.学生在做课本练习1(x+2)(x-3)>0 时,可能会问到转化为不等式组{ 或{ 求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。
2.根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0 可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{ 来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。
以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家!
高中数学优质课说课稿获奖
上一篇:高中数学说课稿课例报告
下一篇:返回列表