高中数学必修二教案(15篇)
我们将不断更新和完善本教案,以适应不断变化的教育环境和学生需求。以下是小编为大家收集的高中数学必修二教案,欢迎阅读,希望大家能够喜欢。
高中数学必修二教案(精选篇1)
平面向量共线的坐标表示
前提条件a=(x1,y1),b=(x2,y2),其中b≠0
结论当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线
[点睛](1)平面向量共线的坐标表示还可以写成x1x2=y1y2(x2≠0,y2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;
(2)当a≠0,b=0时,a∥b,此时x1y2-x2y1=0也成立,即对任意向量a,b都有:x1y2-x2y1=0?a∥b.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)已知a=(x1,y1),b=(x2,y2),若a∥b,则必有x1y2=x2y1.()
(2)向量(2,3)与向量(-4,-6)反向.()
答案:(1)√(2)√
2.若向量a=(1,2),b=(2,3),则与a+b共线的向量可以是()
A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)
答案:C
3.已知a=(1,2),b=(x,4),若a∥b,则x等于()
A.-12B.12C.-2D.2
答案:D
4.已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在x轴上,则点B的坐标为________.
答案:73,0
向量共线的判定
[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),则λ的值等于()
A.12B.13C.1D.2
(2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判断与是否共线?如果共线,它们的方向相同还是相反?
[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.
法二:假设a,b不共线,则由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),从而1=2μ,2=-2μ,方程组显然无解,即a+2b与2a-2b不共线,这与(a+2b)∥(2a-2b)矛盾,从而假设不成立,故应有a,b共线,所以1λ=21,即λ=12.
[答案]A
(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),
∵(-2)×(-6)-3×4=0,∴,共线.
又=-2,∴,方向相反.
综上,与共线且方向相反.
向量共线的判定方法
(1)利用向量共线定理,由a=λb(b≠0)推出a∥b.
(2)利用向量共线的坐标表达式x1y2-x2y1=0直接求解.
[活学活用]
已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行,平行时它们的方向相同还是相反?
解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4),
若ka+b与a-3b平行,则-4(k-3)-10(2k+2)=0,
解得k=-13,此时ka+b=-13a+b=-13(a-3b),故ka+b与a-3b反向.
∴k=-13时,ka+b与a-3b平行且方向相反.
三点共线问题
[典例](1)已知=(3,4),=(7,12),=(9,16),求证:A,B,C三点共线;
(2)设向量=(k,12),=(4,5),=(10,k),当k为何值时,A,B,C三点
共线?
[解](1)证明:∵=-=(4,8),
=-=(6,12),
∴=32,即与共线.
又∵与有公共点A,∴A,B,C三点共线.
(2)若A,B,C三点共线,则,共线,
∵=-=(4-k,-7),
=-=(10-k,k-12),
∴(4-k)(k-12)+7(10-k)=0.
解得k=-2或k=11.
有关三点共线问题的解题策略
(1)要判断A,B,C三点是否共线,一般是看与,或与,或与是否共线,若共线,则A,B,C三点共线;
(2)使用A,B,C三点共线这一条件建立方程求参数时,利用=λ,或=λ,或=λ都是可以的,但原则上要少用含未知数的表达式.
高中数学必修二教案(精选篇2)
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
教学重点难点
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.
教学过程设计
(-)导入新课
(教师活动)提出下列思考问题,打出字幕.
[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?
(学生活动)讨论并回答.
答案提示:(1)排列;(2)组合.
[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.
设计意图:组合与排列所研究的问题几乎是平行的上面设计的问题目的是从排列知识中发现并提出新的问题.
(二)新课讲授
[提出问题 创设情境]
(教师活动)指导学生带着问题阅读课文.
[字幕]1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.
(教师活动)对照课文,逐一评析.
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.
【归纳概括 建立新知】
(教师活动)承接上述问题的回答,展示下面知识.
[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.
组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .
[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.
(学生活动)倾听、思索、记录.
(教师活动)提出思考问题.
[投影] 与 的关系如何?
(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:
第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;
第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到
[字幕]公式1:
公式2:
(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.
设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.
【例题示范 探求方法】
(教师活动)打出字幕,给出示范,指导训练.
[字幕]例1 列举从4个元素 中任取2个元素的所有组合.
例2 计算:(1) ;(2) .
(学生活动)板演、示范.
(教师活动)讲评并指出用两种方法计算例2的第2小题.
[字幕]例3 已知 ,求 的所有值.
(学生活动)思考分析.
解 首先,根据组合的定义,有
①
其次,由原不等式转化为
即
解得 ②
综合①、②,得 ,即
[点评]这是组合数公式的应用,关键是公式的选择.
设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.
【反馈练习 学会应用】
(教师活动)给出练习,学生解答,教师点评.
[课堂练习]课本P99练习第2,5,6题.
[补充练习]
[字幕]1.计算:
2.已知 ,求 .
(学生活动)板演、解答.
设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.
(三)小结
(师生活动)共同小结.
本节主要内容有
1.组合概念.
2.组合数计算的两个公式.
(四)布置作业
1.课本作业:习题10 3第1(1)、(4),3题.
2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?
3.研究性题:
在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?
(五)课后点评
在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.
高中数学必修二教案(精选篇3)
教学目标:
(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.
(2)理解直线与二元一次方程的关系及其证明
(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.
教学重点、难点:直线方程的一般式.直线与二元一次方程 ( 、 不同时为0)的对应关系及其证明.
教学用具:计算机
教学方法:启发引导法,讨论法
教学过程:
下面给出教学实施过程设计的简要思路:
教学设计思路:
(一)引入的设计
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.
肯定学生回答,并纠正学生中不规范的表述.再看一个问题:
问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是 (或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.
肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.
学生或独立研究,或合作研究,教师巡视指导.
经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:
思路一:…
思路二:…
……
教师组织评价,确定最优方案(其它待课下研究)如下:
按斜率是否存在,任意直线 的位置有两种可能,即斜率 存在或不存在.
当 存在时,直线 的截距 也一定存在,直线 的方程可表示为 ,它是二元一次方程.
当 不存在时,直线 的方程可表示为 形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线 上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.
综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于 、 的二元一次方程.
至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成 或 的形式,准确地说应该是“要么形如 这样,要么形如 这样的方程”.
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式.
这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如 (其中 、 不同时为0)的二元一次方程.
启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线吗?
不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?
师生共同讨论,评价不同思路,达成共识:
回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程 (其中 、 不同时为0)系数 是否为0恰好对应斜率 是否存在,即
(1)当 时,方程可化为
这是表示斜率为 、在 轴上的截距为 的直线.
(2)当 时,由于 、 不同时为0,必有 ,方程可化为
这表示一条与 轴垂直的直线.
因此,得到结论:
在平面直角坐标系中,任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线.
为方便,我们把 (其中 、 不同时为0)称作直线方程的一般式是合理的.
【动画演示】
演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.
至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.
(三)练习巩固、总结提高、板书和作业等环节的设计
略
高中数学必修二教案(精选篇4)
教学准备
教学目标
熟练掌握三角函数式的求值
教学重难点
熟练掌握三角函数式的求值
教学过程
【知识点精讲】
三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形
三角函数式的求值的类型一般可分为:
(1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角
(2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
(4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之
三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形
重视角的范围对三角函数值的影响,对角的范围要讨论
【例题选讲】
课堂小结】
三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形
三角函数式的求值的类型一般可分为:
(1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角
(2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
(4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之
三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形
重视角的范围对三角函数值的影响,对角的范围要讨论
高中数学必修二教案(精选篇5)
三维目标:
1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
2、过程与方法:
(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
教学方法:
讲练结合法
教学用具:
多媒体
课时安排:
1课时
教学过程:
一、问题情境
假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?
二、探究新知
1、统计的有关概念:总体:在统计学中,所有考察对象的全体叫做总体、个体:每一个考察的对象叫做个体、样本:从总体中抽取的一部分个体叫做总体的一个样本、样本容量:样本中个体的数目叫做样本的容量、统计的基本思想:用样本去估计总体、
2、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
下列抽样的方式是否属于简单随机抽样?为什么?
(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
(3)从8台电脑中,不放回地随机抽取2台进行质量检查(假设8台电脑已编好号,对编号随机抽取)
3、常用的简单随机抽样方法有:
(1)抽签法的定义。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?例1、若已知高一(6)班总共有57人,现要抽取8位同学出来做游戏,请设计一个抽取的方法,要使得每位同学被抽到的机会相等。
分析:可以把57位同学的学号分别写在大小,质地都相同的纸片上,折叠或揉成小球,把纸片集中在一起并充分搅拌后,在从中个抽出8张纸片,再选出纸片上的学号对应的同学即可、基本步骤:第一步:将总体的所有N个个体从1至N编号;第二步:准备N个号签分别标上这些编号,将号签放在容器中搅拌均匀后每次抽取一个号签,不放回地连续取n次;第三步:将取出的n个号签上的号码所对应的n个个体作为样本。
(2)随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。第一步,先将800袋牛奶编号,可以编为000,001,799。
第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;
继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。
三、课堂练习
四、课堂小结
1、简单随机抽样的概念一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
2、简单随机抽样的方法:抽签法随机数表法
五、课后作业
P57练习1、2
六、板书设计
1、统计的有关概念
2、简单随机抽样的概念
3、常用的简单随机抽样方法有:(1)抽签法(2)随机数表法
4、课堂练习
高中数学必修二教案(精选篇6)
1.课题
填写课题名称(高中代数类课题)
2.教学目标
(1)知识与技能:
通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;
(2)过程与方法:
通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;
(3)情感态度与价值观:
通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。
3.教学重难点
(1)教学重点:本节课的知识重点
(2)教学难点:易错点、难以理解的知识点
4.教学方法(一般从中选择3个就可以了)
(1)讨论法
(2)情景教学法
(3)问答法
(4)发现法
(5)讲授法
5.教学过程
(1)导入
简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)
(2)新授课程(一般分为三个小步骤)
①简单讲解本节课基础知识点(例:奇函数的定义)。
②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。
③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。
(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)
(3)课堂小结
教师提问,学生回答本节课的收获。
(4)作业提高
布置作业(尽量与实际生活相联系,有所创新)。
6.教学板书
高中数学必修二教案(精选篇7)
教学目标:
1、理解并掌握瞬时速度的定义;
2、会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;
3、理解瞬时速度的实际背景,培养学生解决实际问题的能力。
教学重点:
会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度。
教学难点:
理解瞬时速度和瞬时加速度的定义。
教学过程:
一、问题情境
1、问题情境。
平均速度:物体的运动位移与所用时间的比称为平均速度。
问题一平均速度反映物体在某一段时间段内运动的快慢程度。那么如何刻画物体在某一时刻运动的快慢程度?
问题二跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的速度是不同的。假设t秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度.
2、探究活动:
(1)计算运动员在2s到2.1s(t∈)内的平均速度。
(2)计算运动员在2s到(2+?t)s(t∈)内的平均速度。
(3)如何计算运动员在更短时间内的平均速度。
探究结论:
时间区间
t
平均速度
0.1
-13.59
0.01
-13.149
0.001
-13.1049
0.0001
-13.10049
0.00001
-13.100049
0.000001
-13.1000049
当?t?0时,?-13.1,
该常数可作为运动员在2s时的瞬时速度。
即t=2s时,高度对于时间的瞬时变化率。
二、建构数学
1、平均速度。
设物体作直线运动所经过的路程为,以为起始时刻,物体在?t时间内的平均速度为。
可作为物体在时刻的速度的近似值,?t越小,近似的程度就越好。所以当?t?0时,极限就是物体在时刻的瞬时速度。
三、数学运用
例1物体作自由落体运动,运动方程为,其中位移单位是m,时
间单位是s,,求:
(1)物体在时间区间s上的平均速度;
(2)物体在时间区间上的平均速度;
(3)物体在t=2s时的瞬时速度。
分析
解
(1)将?t=0.1代入上式,得:=2.05g=20.5m/s。
(2)将?t=0.01代入上式,得:=2.005g=20.05m/s。
(3)当?t?0,2+?t?2,从而平均速度的极限为:
例2设一辆轿车在公路上作直线运动,假设时的速度为,
求当时轿车的瞬时加速度。
解
∴当?t无限趋于0时,无限趋于,即=。
练习
课本P12—1,2。
四、回顾小结
问题1本节课你学到了什么?
1理解瞬时速度和瞬时加速度的定义;
2实际应用问题中瞬时速度和瞬时加速度的求解;
问题2解决瞬时速度和瞬时加速度问题需要注意什么?
注意当?t?0时,瞬时速度和瞬时加速度的极限值。
问题3本节课体现了哪些数学思想方法?
2极限的思想方法。
3特殊到一般、从具体到抽象的推理方法。
五、课外作业
高中数学必修二教案(精选篇8)
一、教学目标
【知识与技能】
掌握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】
经历三角函数的单调性的探索过程,提升逻辑推理能力。
【情感态度价值观】
在猜想计算的过程中,提高学习数学的兴趣。
二、教学重难点
【教学重点】
三角函数的单调性以及三角函数值的取值范围。
【教学难点】
探究三角函数的单调性以及三角函数值的取值范围过程。
三、教学过程
(一)引入新课
提出问题:如何研究三角函数的单调性
(四)小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。
高中数学必修二教案(精选篇9)
教学目标:
1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。
2、会求一些简单函数的反函数。
3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。
4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。
教学重点:
求反函数的方法。
教学难点:
反函数的概念。
教学过程:
教学活动
设计意图一、创设情境,引入新课
1、复习提问
①函数的概念
②y=f(x)中各变量的意义
2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。
3、板书课题
由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。
二、实例分析,组织探究
1、问题组一:
(用投影给出函数与;与()的图象)
(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)
(2)由,已知y能否求x?
(3)是否是一个函数?它与有何关系?
(4)与有何联系?
2、问题组二:
(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(3)函数 ()的定义域与函数()的值域有什么关系?
3、渗透反函数的概念。
(教师点明这样的函数即互为反函数,然后师生共同探究其特点)
从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。
通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。
三、师生互动,归纳定义
1、(根据上述实例,教师与学生共同归纳出反函数的定义)
函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。
2、引导分析:
1)反函数也是函数;
2)对应法则为互逆运算;
3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;
4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;
5)函数y=f(x)与x=f(y)互为反函数;
6)要理解好符号f;
7)交换变量x、y的原因。
3、两次转换x、y的对应关系
(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)
4、函数与其反函数的关系
函数y=f(x)
函数
定义域
A
C
值 域
C
A
四、应用解题,总结步骤
1、(投影例题)
【例1】求下列函数的反函数
(1)y=3x—1 (2)y=x 1
【例2】求函数的反函数。
(教师板书例题过程后,由学生总结求反函数步骤。)
2、总结求函数反函数的步骤:
1° 由y=f(x)反解出x=f(y)。
2° 把x=f(y)中 x与y互换得。
3° 写出反函数的定义域。
(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?
(2)的反函数是________。
(3)(x<0)的反函数是__________。
在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。
通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。
通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。
题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。
五、巩固强化,评价反馈
1、已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)
(1)y=—2x 3(xR) (2)y=—(xR,且x)
( 3 ) y=(xR,且x)
2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。
五、反思小结,再度设疑
本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。
(让学生谈一下本节课的学习体会,教师适时点拨)
进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。
六、作业
习题24 第1题,第2题
进一步巩固所学的知识。
教学设计说明
"问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。
反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。
高中数学必修二教案(精选篇10)
1.教学目标
(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;
2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.
(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;
2.使学生加深对数形结合思想和待定系数法的理解;
3.增强学生用数学的意识.
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.
2.教学重点.难点
(1)教学重点:圆的标准方程的求法及其应用.
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰
当的坐标系解决与圆有关的实际问题.
3.教学过程
(一)创设情境(启迪思维)
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
[引导] 画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)
将x=2.7代入,得 .
即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?
答:x2 y2=r2
2.如果圆心在 ,半径为 时又如何呢?
[学生活动] 探究圆的方程。
[教师预设] 方法一:坐标法
如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}
由两点间的距离公式,点m适合的条件可表示为 ①
把①式两边平方,得(x―a)2 (y―b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
i.直接应用(内化新知)
问题三:1.写出下列各圆的方程(课本p77练习1)
(1)圆心在原点,半径为3;
(2)圆心在 ,半径为 ;
(3)经过点 ,圆心在点 .
2.根据圆的方程写出圆心和半径
(1) ; (2) .
ii.灵活应用(提升能力)
问题四:1.求以 为圆心,并且和直线 相切的圆的方程.
[教师引导]由问题三知:圆心与半径可以确定圆.
2.已知圆的方程为 ,求过圆上一点 的切线方程.
[学生活动]探究方法
[教师预设]
方法一:待定系数法(利用几何关系求斜率-垂直)
方法二:待定系数法(利用代数关系求斜率-联立方程)
方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]
方法四:轨迹法(利用向量垂直列关系式)
3.你能归纳出具有一般性的结论吗?
已知圆的方程是 ,经过圆上一点 的切线的方程是: .
iii.实际应用(回归自然)
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).
[多媒体课件演示创设实际问题情境]
(四)反馈训练(形成方法)
问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.
2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.
3.求圆x2 y2=13过点(-2,3)的切线方程.
4.已知圆的方程为 ,求过点 的切线方程.
高中数学必修二教案(精选篇11)
一、教学目标
知识与技能:
理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:
1、提高学生的推理能力;
2、培养学生应用意识。
二、教学重点、难点:
教学重点:
任意角概念的理解;区间角的集合的书写。
教学难点:
终边相同角的集合的表示;区间角的集合的书写。
三、教学过程
(一)导入新课
1、回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课
1、角的`有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:
注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?
2、象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?
高中数学必修二教案(精选篇12)
教学目标:
1.结合实际问题情景,理解分层抽样的必要性和重要性;
2.学会用分层抽样的方法从总体中抽取样本;
3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.
教学重点:
通过实例理解分层抽样的方法.
教学难点:
分层抽样的步骤.
教学过程:
一、问题情境
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.
由于样本的容量与总体的个体数的比为100∶2500=1∶25,
所以在各年级抽取的个体数依次是,,,即40,32,28.
三、建构数学
1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
2.三种抽样方法对照表:
类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
抽样过程中每个个体被抽取的概率是相同的
从总体中逐个抽取
总体中的个体数较少
系统抽样
将总体均分成几个部分,按事先确定的规则在各部分抽取
在第一部分抽样时采用简单随机抽样
总体中的个体数较多
分层抽样
将总体分成几层,分层进行抽取
各层抽样时采用简单随机抽样或系统
总体由差异明显的几部分组成
3.分层抽样的步骤:
(1)分层:将总体按某种特征分成若干部分.
(2)确定比例:计算各层的个体数与总体的个体数的比.
(3)确定各层应抽取的样本容量.
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.
四、数学运用
1.例题.
例1(1)分层抽样中,在每一层进行抽样可用_________________.
(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;
②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;
③某班元旦聚会,要产生两名“幸运者”.
对这三件事,合适的抽样方法为()
A.分层抽样,分层抽样,简单随机抽样
B.系统抽样,系统抽样,简单随机抽样
C.分层抽样,简单随机抽样,简单随机抽样
D.系统抽样,分层抽样,简单随机抽样
例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:
很喜爱
喜爱
一般
不喜爱
2435
4567
3926
1072
电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?
解:抽取人数与总的比是60∶12000=1∶200,
则各层抽取的人数依次是12.175,22.835,19.63,5.36,
取近似值得各层人数分别是12,23,20,5.
然后在各层用简单随机抽样方法抽取.
答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人
数分别为12,23,20,5.
说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.
(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.
分析:(1)总体容量较小,用抽签法或随机数表法都很方便.
(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.
(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.
五、要点归纳与方法小结
本节课学习了以下内容:
1.分层抽样的概念与特征;
2.三种抽样方法相互之间的区别与联系.
高中数学必修二教案(精选篇13)
教学目标
(1)了解算法的含义,体会算法思想。
(2)会用自然语言和数学语言描述简单具体问题的算法;
(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。
教学重难点
重点:算法的含义、解二元一次方程组的算法设计。
难点:把自然语言转化为算法语言。
情境导入
电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:
第一步:观察、等待目标出现(用望远镜或瞄准镜);
第二步:瞄准目标;
第三步:计算(或估测)风速、距离、空气湿度、空气密度;
第四步:根据第三步的结果修正弹着点;
第五步:开枪;
第六步:迅速转移(或隐蔽)
以上这种完成狙击任务的方法、步骤在数学上我们叫算法。
课堂探究
预习提升
1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。
2、描述方式
自然语言、数学语言、形式语言(算法语言)、框图。
3、算法的要求
(1)写出的算法,必须能解决一类问题,且能重复使用;
(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。
4、算法的特征
(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。
(2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。
(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果。
(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。
(5)不唯一性:解决同一问题的算法可以是不唯一的
课堂典例讲练
命题方向1对算法意义的理解
例1、下列叙述中,
①植树需要运苗、挖坑、栽苗、浇水这些步骤;
②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;
③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;
④3x>x+1;
⑤求所有能被3整除的正数,即3,6,9,12。
能称为算法的个数为( )
A、2
B、3
C、4
D、5
【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。
【答案】B
[规律总结]
1、正确理解算法的概念及其特点是解决问题的关键、
2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、
【变式训练】下列对算法的理解不正确的是________
①一个算法应包含有限的步骤,而不能是无限的
②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤
③算法中的每一步都应当有效地执行,并得到确定的结果
④一个问题只能设计出一个算法
【解析】由算法的有限性指包含的步骤是有限的故①正确;
由算法的明确性是指每一步都是确定的故②正确;
由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;
由对于同一个问题可以有不同的算法故④不正确。
【答案】④
命题方向2解方程(组)的算法
例2、给出求解方程组的一个算法。
[思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、
[规范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程组可化为
第二步,解方程③,可得y=-1,④
第三步,将④代入①,可得2x-1=7,x=4
第四步,输出4,-1
方法二:算法如下:
第一步,由①式可以得到y=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,输出4,-1
[规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用。
2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。
【变式训练】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命题方向3筛选问题的算法设计
例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、
[思路分析]比较a,b比较m与c―→最小数
[规范解答]算法步骤如下:
1、比较a与b的大小,若a
2、比较m与c的大小,若m
[规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。
【变式训练】在下列数字序列中,写出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一个数m,m=21;
2、将m与89比较,是否相等,如果相等,则搜索到89;
3、如果m与89不相等,则往下执行;
4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。
命题方向4非数值性问题的算法
例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。
(1)设计安全渡河的算法;
(2)思考每一步算法所遵循的共同原则是什么?
高中数学必修二教案(精选篇14)
教学目标
1.了解映射的概念,象与原象的概念,和一一映射的概念.
(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;
(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;
(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.
2.在概念形成过程中,培养学生的观察,比较和归纳的能力.
3.通过映射概念的学习,逐步提高学生对知识的探究能力.
教学建议
教材分析
(1)知识结构
映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:
由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.
(2)重点,难点分析
本节的教学重点和难点是映射和一一映射概念的形成与认识.
①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;
映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.
②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.
教法建议
(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.
(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
教学设计方案
2.1映射
教学目标(1)了解映射的概念,象与原象及一一映射的概念.
(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.
(3)通过映射概念的学习,逐步提高学生的探究能力.
教学重点难点::映射概念的形成与认识.
教学用具:实物投影仪
教学方法:启发讨论式
教学过程:
一、引入
在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.
二、新课
在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)
我们今天要研究的是一类特殊的对应,特殊在什么地方呢?
提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?
让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)
提问2:能用自己的语言描述一下这几个对应的共性吗?
经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)
高中数学必修二教案(精选篇15)
[学习目标]
(1)会用坐标法及距离公式证明Cα+β;
(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。
[学习重点]
两角和与差的正弦、余弦、正切公式
[学习难点]
余弦和角公式的推导
[知识结构]
1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)
2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。
4、关于公式的正用、逆用及变用
高中数学必修二教案15篇
上一篇:高中数学必修一教案15篇
下一篇:返回列表