一元一次方程常见练习题及答案(可下载)
一元一次方程是一种最简单的方程,它只含有一个未知数,并且未知数的最高次数是。以下是小编为大家收集的关于一元一次方程练习题的相关内容,供大家参考!
一元一次方程练习题
1、已知关于x、y的方程式(m2-4)x2+(m+2)x+(m+1)y=m+5,当m时,它是一元一次方程;当m 时,它是二元一次方程。
二、选择题(每题3分共24分)
8、设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米。求x、u、v。根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()
A、x=u+4B、x=v+4C、2x-u=4 D、x-v=4
三、解答题
1、在y=ax2+bx+c中,当x=0时,y的值是-7,x=1时y的值是-9,x=-1时y的值是-3,求a、b、c的值,并求x=5时y的值。(6分)
2、解下列方程组(每题5分,共10分)
当比赛进行到第12轮结束时,该队负3场,共积19分。
问:(1)该队胜,平各几场?(2)若每一场,每名参赛队员均得出场费500元,试求该队每名队员在12轮比赛结束后总收入。
5、有三部楼梯,分别是五步梯、七步梯、九步梯,每攀沿一步阶梯上升的高度是一致的。每部楼梯的扶杆长(即梯长)、顶档宽、底档宽如图所示,并把横档与扶杆榫合处称作联结点(如点A)。(8分)
(1)通过计算,补充填写下表:
(2)一部楼梯的成本由材料费和加工费组成,假定加工费以每个联结点1元计算,而材料费中扶杆的单价与横杆的单价不相等(材料损耗及其它因素忽略不计)。现已知一部五步梯、七步梯的成本分别是26元、36元,试求出一部九步梯的成本。
一元一次方程练习题参考答案
一、填空题
1、-2,2;2、2、- ,x=5y=1,x=8y=2;3、-1;
4、 ,12;5、0;6、2;7、-1,-1;8、3,3;
9、10;10、x=1y=16,x=2y=12,x=3y=8,x=4y=4;
11、4;12、x= y= ;13、1;14、x=0y=1;15、12;
16、-43;17、42,15;18、6,3。
二、选择题
1、C;2、C;3、B;4、D;5、C;6、D;7、B;
8、A。
三、解答题
1、a=1,b=-3,c=-7;当x=3时,y=3。
2、(1)x= y= ;(2)x=-1y=2z=-3
3、设一只小猫x元,一只小狗y元,则x+2y=702x+y=50,解得x=10y=30,答一只小猫10元,一只小狗30元。
4、解(1)设该队胜x场,平y场,则x+y+3=123x+y=19,解得x=5y=4,答该队胜5场,平4场。
(2)5×1500+4×700+12×500=16300(元)
答该队每名队员在12轮比赛结束后总收入为16300元。
5、解:(1)七步梯、九步梯的扶杆长分别是5米、6米;横档总长分别是3.5米、5.4米(各1分);联结点个数分别是14个、18个。
(2)设扶杆单价为x元/米,横档单价为y元/米。依题意得4x+2y+1×10=265x+3.5y+1×14=36即2x+y=85x+3.5y=22,解得x=3y=2,故九步梯的成本为6×3+5.4×2+1×18=46.8(元)。
什么是一元一次方程
意味着在一个复数方程中,当x和y分别取两个不同的实数值时,该方程的解都是相同的实数,即x和y的值相等。这种情况通常发生在一个复数方程的判别式为零的情况下。
即Δ=b?-4ac=0,其中a、b、c分别为方程中的系数。当Δ=0时,方程有两个相等的实数根。
一元一次方程的特点
1、为一个等式。
2、该方程为整式方程。
3、该方程有且只含有一个未知数。
4、该方程中未知数的最高次数是1。(系数化为1)
5、未知数系数不为0。
满足以上五点的方程,就是一元一次方程。
一元一次方程判定
要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为ax+b=0(a≠0,a是ax的系数,a与b均为常数)的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。
变形公式:ax=b(a,b为常数,x为未知数,且a≠0)。
四、两种类型
1、总量等于各分量之和。将未知数放在等号左边,常数放在右边。如:x+2x+3x=6。
2、等式两边都含未知数。如:300x+400=400x,40x+20=60x。