2023初中数学优秀说课稿【5篇】
教师在说课稿中应突出课程的多元化和综合性特点,培养学生的综合素质。通过不断书写、修改和完善说课稿,教师能够提高自己的教学技能和教育教学水平。这里给大家分享一些关于2023初中数学优秀说课稿,供大家参考学习。
2023初中数学优秀说课稿(篇1)
大家好!很高兴有这样一个机会与大家一起学习、交流,希望大家多多指教!我说课的课题是“合并同类项”,下面进行简单的说课:
一、教材与学情分析:
本节课选自湘教版《数学》七年级上册§2.4节,是学生进入初中阶段,在引入用字母表示数,学习了代数式、多项式以及有理数运算的基础上,对同类项进行合并的探索、研究。合并同类项是本章的一个重点,其法则的应用是一次式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算律的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
七年级的学生具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。所授班级中,已初步形成合作交流、勇于探索的学习风气。
基与上面对教材与学情的分析,结合《新课标》的要求,我确定以下教学目标、教学重点和难点:
教学目标:
知识目标:
1、了解同类项、多项式相等的概念。
2、掌握合并同类项的法则。
能力目标:
1、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。
2、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
情感目标:
1、通过设置具体的问题情境,以小组为单位开展探究、交流等活动,让学生感受合作的愉快与收获。
2、实施开放性教学,让学生获得成功的体验。
3、通过设置不同层次的问题,使不同程度的学生得到不同的发展。
教学重点: 同类项的概念、合并同类项的法则及应用。
教学难点: 正确判断同类项;准确合并同类项。
二、设计思路:
1、 采用“问题情境---建立模型---解释、应用与拓展”的模式展开教学。让学生经历同类项概念和合并同类项法则的形成与应用过程,从而更好地理解知识,掌握其思想方法和应用技能。
2、 引导学生主动地从事观察、猜想、推理、论证、交流与反思等数学活动;鼓励学生自主探索与合作交流,使学生主动地获取知识,积累数学活动经验,学会探索、学会学习。
3、 关注学生的情感与态度,实施开放性教学,让学生获得成功的体验。
三、 教学方法、手段与教学程序:
为了达到教学目标,实现我的设计效果,我采用引导、探究法为主的教学法,应用多媒体课件运用CAI辅助教学。设计以下主要教学流程:
1)创设五个步步深入的问题情境:目的在于引发学生学习的积极性,启发学生的探索欲 望,同时为本课学习做好准备和铺垫。
2)问题探讨:让学生通过自主探索与合作交流认识同类项,了解数学分类的思想;获得合并同类项的法则,体验探求规律的思想方法。同时让学生体验合作的愉快与收获。感受成功的喜悦。
3)火眼金睛与看谁做的又快又准:让学生加深对同类项的认识,加强对合并同类项法则的理解。
4)例题讲解与巩固练习:让学生掌握在多项式中判断出同类项和运用法则进行合并同类项运算的技能,使学生的知识、技能螺旋式上升。
5)课堂小结:通过学生的自我反思,将知识条理化、系统化。
6)拓展延伸与挑战自我:激发学生的学习热情,为他们提供更广泛的发展空间。
我的教学目的能不能实现,设计效果能不能达到,就只能看我接下来上课的情况了!我的说课就简单说到这里,谢谢大家!
2023初中数学优秀说课稿(篇2)
一、教材分析
(一)地位、作用
本节课是在学生已经学习了直线、射线、线段和角的有关知识的基础上,进一步研究平面内两条直线相交形成4个角的位置和数量关系,为今后学习几何奠定了基础,同时也为证明几何题提供了一个示范作用,本节对于进一步培养学生的识图能力,激发学生的学习兴趣具有推动作用,所以本节课具有很重要的地位和作用。
(二)教学目标
根据学生已经有的知识基础,依据《教学大纲》的要求,确定本节课的教学目标为:
1、知识与技能
(1)理解对顶角和邻补角的概念,能从图中辨别对顶角和邻补角。
(2)掌握“对顶角相等的性质”。
(3)理解对顶角相等的说理过程。
2、过程与方法
经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力。
3、情感态度和价值观
通过小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣;在解题中感受生活中数学的存在,体验数学中充满着探索和创造。
(三)重点,难点
根据学生已有的知识基础,依据教学大纲的要求,确定本节课的重难点为:
重点:邻补角和对顶角的概念及对顶角相等的性质。
难点:写出规范的推理过程和对对顶角相等的探索。
二、教学方法
在教学中,为了突出重点,突破难点,我采用了直观的教具演示和多媒体。增大了教学的直观性,让学生观察、比较、归纳、总结,使学生经历了从具体到抽象,从感性上升到理性的认识过程。
三、学法指导
让学生学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律。从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯。
2023初中数学优秀说课稿(篇3)
教学目标
1.理解二元一次方程及二元一次方程的解的概念;
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
教学重点、难点
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
教学过程
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2。
2.新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。
3.合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换,(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法,提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
4.课堂练习:
1)已知:5xm-2yn=4是二元一次方程,则m+n=;
2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=
5.课堂总结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
作业布置
本章的课后的方程式巩固提高练习。
2023初中数学优秀说课稿(篇4)
教学目标:
1、理解切线的判定定理,并学会运用。
2、知道判定切线常用的方法有两种,初步掌握方法的选择。
教学重点:切线的判定定理和切线判定的方法。
教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。
教学过程:
一、复习提问
【教师】
问题1.怎样过直线l上一点P作已知直线的垂线?
问题2.直线和圆有几种位置关系?
问题3.如何判定直线l是⊙O的切线?
启发:
(1)直线l和⊙O的公共点有几个?
(2)圆心O到直线L的距离与半径的数量关系 如何?
学生答完后,教师强调
(2)是判定直线 l是⊙O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示)
再启发:若把距离OA理解为 OA⊥l,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题)
二、引入新课内容
【学生】命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。
证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。
定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,
求证:直线l是⊙O的切线
证明:略
定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A
∴直线l为⊙O的切线。
是非题:
(1)垂直于圆的半径的直线一定是这个圆的切线。 ( )
(2)过圆的半径的外端的直线一定是这个圆的切线。 ( )
三、例题讲解
例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。
求证:直线AB是⊙O的切线。
引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。
证明:连结OC。
∵OA=OB,CA=CB,
∴AB⊥OC
又∵直线AB经过半径OC的外端C
∴直线AB是⊙O的切线。
练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。
练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。
求证:CD是⊙O的切线。
例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。
求证:DE是⊙O的切线。
思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?
四、小结
1.切线的判定定理。
2.判定一条直线是圆的切线的方法:
①定义:直线和圆有唯一公共点。
②数量关系:直线到圆心的距离等于该圆半径(即d = r)。
③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。
3.证明一条直线是圆的切线的辅助线和证法规律。
凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。
2023初中数学优秀说课稿(篇5)
教学目的
1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。
2、使学生能了解实数绝对值的意义。
3、使学生能了解数轴上的点具有一一对应关系。
4、由实数的分类,渗透数学分类的思想。
5、由实数与数轴的一一对应,渗透数形结合的思想。
教学分析
重点:无理数及实数的概念。
难点:有理数与无理数的区别,点与数的一一对应。
教学过程
一、复习
1、什么叫有理数?
2、有理数可以如何分类?
(按定义分与按大小分。)
二、新授
1、无理数定义:无限不循环小数叫做无理数。
判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。
2、实数的定义:有理数与无理数统称为实数。
3、按课本中列表,将各数间的联系介绍一下。
除了按定义还能按大小写出列表。
4、实数的相反数:
5、实数的绝对值:
6、实数的运算
讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判断题:
(1)任何实数的偶次幂是正实数。( )
(2)在实数范围内,若| x|=|y|则x=y。( )
(3)0是最小的实数。( )
(4)0是绝对值最小的实数。( )
解:略
三、练习
P148 练习:3、4、5、6。
四、小结
1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。
2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。
五、作业
1、P150 习题A:3。
2、基础训练:同步练习1。